Das Gleitsystem beschreibt in der Kristallmechanik mittels Gleitebene und Gleitrichtung die Verformung von Kristallen, speziell von Metallen durch Versetzungsbewegung.
Bei der plastischen Verformung werden diejenigen Versetzungen bewegt, in deren Gleitsystem ein bestimmter Grenzwert der Schubspannung erreicht oder überschritten wird. Wo die betätigte Gleitebene die freie Kristalloberfläche schneidet, entsteht eine Gleitspur. Die auf ein Gleitsystem wirkende Schubspannung wird durch die Orientierung des Gleitsystems zur anliegenden Spannung bestimmt (Schmidsches Schubspannungsgesetz). Durch die Versetzungsbewegung werden weitere Versetzungen erzeugt, die als Hindernisse die Versetzungsbewegungen erschweren. Als Resultat wird in den meisten metallischen Werkstoffen eine Verfestigung beobachtet.
Bei fortschreitender Verformung verdreht sich das Kristallgitter so lange, bis in einem anderen Gleitsystem die maximale Schubspannung wirkt und dieses die weitere Verformung des Kristalls übernimmt. Die dafür notwendige Spannung wird im Allgemeinen höher als in dem zuerst aktiven Gleitsystem sein, was einen weiteren Beitrag zur Verfestigung darstellt.
Die Gleitebenen bilden in einem Kristall die Ebenen zwischen Atomlagen mit dichtester Packung und großem Schichtabstand. In ihnen findet bei Verformung die Versetzungsbewegung statt, da die relativ kleinste kritische Schubspannung benötigt wird.
Gleitebenen werden mit den in der Kristallographie üblichen millerschen Indizes gekennzeichnet. Typische Beispiele sind die {111}-Ebene im kubisch-flächenzentrierten Gitter (kfz, engl. fcc) sowie die {110}- und {112}-Ebenen im kubisch-raumzentrierten Gitter (krz, engl. bcc). Im hexagonalen Kristallsystem (hex, engl. hcp) ist meistens {0001} die Gleitebene.
In Molekülkristallen mit komplizierter Struktur können sich die Gleitsysteme auch nach anderen Auswahlregeln richten. So wurde bei zwei isomorphen triklinen TCNQ-Komplexsalzen gefunden, dass die Gleitebene (010) parallel zu einer Art Gasse in der Struktur orientiert ist, welche nicht von Teilen der Moleküle gekreuzt wird, so dass Gleitung in den Gleitrichtungen [$ 101 $], [$ 10{\bar {1}} $] und deren Gegenrichtungen erfolgen kann, ohne dass die Moleküle selbst beschädigt werden.[1]
Die Gleitrichtung ist die Richtung der dich(tes)ten Atompackung und somit die Richtung, in die das Gleiten der Atomschichten mit relativ kleinstem Energieaufwand möglich ist.
Typische Beispiele sind[2]
Aus den möglichen Gleitebenen und Gleitrichtungen ergeben sich verschiedene mögliche Gleitsysteme.
Kristallstruktur | Gleitebene | Gleitrichtung | nichtparallele Ebenen | Gleitrichtungen pro Ebene | Anzahl Gleitsysteme | Anmerkung |
---|---|---|---|---|---|---|
kfz[3] | {111} | <110> | 4 | 3 | 12 | |
krz[4] | {110} | <111> | 6 | 2 | 12 | |
{112} | <111> | 12 | 1 | 12 | ||
{123} | <111> | 24 | 1 | 24 | nicht in allen krz-Metallen nachgewiesen | |
hex[5] | {0001} | <1120> | 1 | 3 | 3 | |
{1010} | <1120> | 3 | 1 | 3 | nicht in allen hex-Metallen aktiv | |
{1011} | <1120> | 6 | 1 | 6 | nicht in allen hex-Metallen aktiv |
Die unterschiedlichen Gleitsysteme erklären auch die unterschiedlich gute Verformbarkeit der Kristallstrukturen: In kfz- und krz-Strukturen sind Systeme des gleichen Typs räumlich gleichmäßig verteilt. Dagegen ermöglichen in hex-Strukturen die leicht aktivierbaren {0001}<1120>-Systeme eine Bewegung nur in einer Ebene; daher ist hier für beliebige Verformungen immer der Beitrag der anderen Gleitsysteme (oder die mechanische Zwillingsbildung) notwendig, was aber in der Regel eine deutlich höhere Spannung benötigt.
Schubspannung | Cu (kfz) | Fe (krz) | Cd (hex) |
---|---|---|---|
$ \tau _{th} $ | 4200 | 8000 | 200 |
$ \tau _{0} $ | 0,6 | 14 | 0,5 |