Kapillarwellen sind Transversalwellen an einer Flüssigkeitsoberfläche, deren Eigenschaften inklusive der Ausbreitungsgeschwindigkeit hauptsächlich von der Oberflächenspannung der Flüssigkeit abhängen. Dies ist bis zu einer Wellenlänge von etwa einem Zentimeter der Fall.[1]
Mit steigender Wellenlänge gehen Kapillarwellen in Schwerewellen über, bei denen der Einfluss der Schwerkraft überwiegt.
Am höchsten Punkt eines Wellenberges ($ y=h $) wirkt nach der Young-Laplace-Gleichung der Kapillardruck
mit
Somit ist auf dem Wellenberg der Kapillardruck durch
gegeben und für das Wellental mit entsprechend geändertem Vorzeichen.
Auf dem Wellenberg ist die Geschwindigkeit der Flüssigkeitsteilchen geringer als im Wellental: Für einen Beobachter, der der Welle folgt haben die Teilchen in ersterem (betragsmäßig) die Geschwindigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): c_\mathrm{kap}-v und in letzterem die Geschwindigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): c_\mathrm{kap}+v . Dabei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): c_\mathrm{kap} die Ausbreitungsgeschwindigkeit der Welle und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v der (halbe) Geschwindigkeitsunterschied. Für einen mit der Flüssigkeit ruhenden Beobachter bewegen sich die Teilchen (in guter Näherung) nicht. Die Propagation der Welle durch die Flüssigkeit entspricht für ihn einer Kreisbewegung der einzelnen Teilchen mit Radius $ h $ und Radialgeschwindigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v . Dabei ist die Winkelgeschwindigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \omega wie gewöhnlich mit der Wellenlänge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \lambda verbunden:
Die Differenz der kinetischen Energie pro Volumen (mit Flüssigkeitsdichte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho )
zwischen Berg und Tal entspricht einem Druck (Bernoulli-Formel), der dem Kapillardruck entgegenwirkt.
Aus der Bedingung, dass dieser dynamische Druckunterschied zwischen Wellenberg und Wellental gleich dem Kapillardruckunterschied (dieser entspricht dem zweifachen Betrag des oben angegebenen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): ~p_\mathrm{kap} ) zwischen diesen beiden Regionen ist, folgt somit für die Ausbreitungsgeschwindigkeit
Das bedeutet, dass Kapillarwellen eine anomale Dispersion haben, d. h. ihre Ausbreitungsgeschwindigkeit nimmt mit steigender Wellenlänge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \lambda ab.