Non-Random-Two-Liquid-Modell

Non-Random-Two-Liquid-Modell

Das Non-Random-Two-Liquid-Modell[1] (kurz NRTL-Gleichung, dt. nicht-zufällig, zwei Flüssigkeiten) ist ein thermodynamisches Modell, das die Aktivitätskoeffizienten $ \gamma $ eines chemischen Stoffgemischs mit seiner Zusammensetzung, ausgedrückt durch Molenbrüche Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x , korreliert.

Der Ausdruck „Non Random“, „nicht zufällig“ bezieht sich auf die Struktur der Flüssigkeit und die Anordnung der Moleküle. Während das Porter-, van Laar- und Margules-Modell die strukturierte Anordnung der Moleküle nicht berücksichtigen, wird dies beim Wilson-, Uniquac- und NRTL-Modell eingeführt.

Das NRTL-Modell gilt als das beste VLE-Modell. Die Mindestzahl der binären Parameter sind 2. Inzwischen ist das Modell auf bis zu 9 Parameter ausgebaut. Mit dem NRTL-Modell lassen sich auch LLE, d. h. Flüssig-Flüssig- und SLE, d. h. Fest-Flüssig Gleichgewichte sehr gut simulieren.

NRTL-Modelle gehören zur Klasse der gE-Modelle, da sie auch die freie Exzessenthalpie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): G^E (Exzessgröße der freien Enthalpie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): G ) verwenden.

Gleichungen

Für ein binäres Gemisch gelten folgende Gleichungen[2]:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \ln \gamma_1=x^2_2\left[\tau_{21}\left(\frac{G_{21}}{x_1+x_2 G_{21}}\right)^2 +\frac{\tau_{12} G_{12}} {(x_2+x_1 G_{12})^2 }\right]
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \ln \gamma_2=x^2_1\left[\tau_{12}\left(\frac{G_{12}}{x_2+x_1 G_{12}}\right)^2 +\frac{\tau_{21} G_{21}} {(x_1+x_2 G_{21})^2 }\right]

mit

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \ln G_{12}=-\alpha_{12} \tau_{12}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \ln G_{21}=-\alpha_{21} \tau_{21}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tau_{12} und $ \tau _{21} $ sowie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \alpha_{12} sind Parameter, die an die Aktivitätskoeffizienten angepasst werden.

Zumeist werden jedoch die Parameter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tau noch über die Beziehungen

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tau_{12}=\frac{\Delta g_{12}}{RT}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tau_{21}=\frac{\Delta g_{21}}{RT}

mit der Gaskonstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): R und der Temperatur $ T $ skaliert und dann die Parameter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta g_{12} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta g_{21} angepasst.

Temperaturabhängige Parameter

Sind Aktivitätskoeffizienten über einen größeren Temperaturbereich vorhanden (etwa aus Dampf-Flüssig- und zugleich aus Fest-Flüssig-Gleichgewichten), so können temperaturabhängige Parameter eingeführt werden.

Zwei Ansätze sind gebräuchlich:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{align} \tau_{ij} & = f(T) = a_{ij}+\frac{b_{ij}}{T}+c_{ij} \ln T+d_{ij}T \\ \Delta g_{ij} & = f(T) = a_{ij}+b_{ij}\cdot T +c_{ij}T^{2} \end{align}

Einzelne Terme können weggelassen werden. Bspw. wird der logarithmische Term zumeist nur benutzt, wenn Flüssig-Flüssig-Gleichgewichte (Mischungslücken) modelliert werden müssen.

Herkunft der Aktivitätskoeffizienten

Die benötigten Aktivitätskoeffizienten werden zumeist aus experimentell bestimmten Phasengleichgewichten (Dampf-Flüssig, Flüssig-Flüssig, Fest-Flüssig) sowie aus Mischungswärmen abgeleitet. Quelle dieser experimentellen Daten sind Faktendatenbanken wie etwa die Dortmunder Datenbank. Alternativ werden die Aktivitätskoeffizienten direkt experimentell bestimmt oder mit Vorhersagemodellen, etwa UNIFAC, bestimmt.

Siehe auch

  • Margules-Gleichung

Literatur

  1. Renon H., Prausnitz J. M.: Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures, AIChE J., 14(1), S. 135–144, 1968
  2. Reid R. C., Prausnitz J. M., Poling B. E.: The Properties of Gases & Liquids, 4. Auflage, McGraw-Hill, 1988