Sackur-Tetrode-Gleichung

Sackur-Tetrode-Gleichung

Die Sackur-Tetrode-Gleichung ist eine Formel zur Berechnung der Entropie $ S $ eines monoatomaren idealen Gases.

Sie lautet:

$ S(E,V,N)=k_{\mathrm {B} }N\ln \left[\left({\frac {V}{N}}\right)\left({\frac {E}{N}}\right)^{\frac {3}{2}}\right]+{\frac {3}{2}}k_{\mathrm {B} }N\left({\frac {5}{3}}+\ln {\frac {4\pi m}{3h^{2}}}\right) $

mit:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V Volumen des Gases
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): N Teilchenzahl
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E innere Energie des Gases
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k_\mathrm{B} Boltzmannkonstante
$ m $ Masse eines Gasteilchens
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): h Plancksches Wirkungsquantum

Otto Sackur und Hugo Tetrode stellten unabhängig voneinander diese komplexe Gleichung auf.

Folgerungen

Da die Entropie von den Variablen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E,V,N bekannt ist, lassen sich Temperatur, Druck und chemisches Potential ableiten (siehe Mikrokanonisches Ensemble):

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{1}{T}\begin{pmatrix}1\\ p\\ -\mu\end{pmatrix}=\begin{pmatrix}\partial_{E}\\ \partial_{V}\\ \partial_{N}\end{pmatrix}S(E,V,N)

Somit erhält man die inverse Temperatur durch Ableiten nach der Energie:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{1}{T}=\left(\frac{\partial S}{\partial E}\right)_{V,N} = \frac{3}{2}k_\mathrm{B} N\frac{1}{E}

Hieraus erhält man die kalorische Zustandsgleichung: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E = \tfrac{3}{2}k_\mathrm{B} NT

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{p}{T}=\left(\frac{\partial S}{\partial V}\right)_{E,N} = k_\mathrm{B} N\frac{1}{V}

Hieraus erhält man die thermische Zustandsgleichung: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): pV = k_\mathrm{B} NT

$ -{\frac {\mu }{T}}=\left({\frac {\partial S}{\partial N}}\right)_{E,V}=k_{\mathrm {B} }\ln \left[\left({\frac {V}{N}}\right)\left({\frac {E}{N}}\right)^{\frac {3}{2}}\right]+{\frac {3}{2}}k_{\mathrm {B} }\ln \left({\frac {4\pi m}{3h^{2}}}\right)=k_{\mathrm {B} }\ln \left({\frac {V}{N\lambda ^{3}}}\right) $

Mit der thermischen De-Broglie-Wellenlänge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \lambda=\tfrac{h}{\sqrt{2\pi mk_\mathrm{B}T}} und der Beziehung für die Innere Energie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E=\tfrac{3}{2}k_\mathrm{B} NT lässt sich die Sackur-Tetrode-Gleichung auch schreiben als:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S = k_\mathrm{B} N\ln\left(\frac{V}{N\lambda^{3}}\right) + k_\mathrm{B} N\frac{5}{2}

Herleitung

Ein aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): N Atomen bestehendes monoatomares ideales Gas befinde sich in einem abgeschlossenen Kasten (konstantes Volumen, kein Energie- oder Teilchenaustausch mit der Umgebung, keine äußeren Felder). Es ist also mikrokanonisch zu beschreiben. Hier berechnet sich die gesuchte Entropie aus der Zustandssumme über Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S=k_\mathrm{B} \ln Z_{m} .

Die mikrokanonische Zustandssumme ist:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Z_m(E_{0})=\frac{1}{N!(2\pi\hbar)^{3N}}\int_{\mathbb R^{6N}}d^3x_1d^3p_1\ldots d^3x_Nd^3p_N \;\delta (E_0 - H(\vec{x}_1,\vec{p}_1,\ldots,\vec{x}_N,\vec{p}_N))

Die Gasteilchen seien einzelne Atome (keine Rotationen oder Vibrationen, nur Translation möglich), die nicht miteinander wechselwirken. Die dazugehörige Hamiltonfunktion ist:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): H(\vec{x}_{1},\vec{p}_{1},\ldots,\vec{x}_{N},\vec{p}_{N})=\sum_{i=1}^{N}\frac{\vec{p}_{i}^{\;2}}{2m}

Eingesetzt in die Zustandssumme:

$ Z_{m}(E_{0})={\frac {1}{N!(2\pi \hbar )^{3N}}}\underbrace {\int _{\mathbb {R} ^{3N}}d^{3}x_{1}\ldots d^{3}x_{N}} _{V^{N}}\int _{\mathbb {R} ^{3N}}d^{3}p_{1}\ldots d^{3}p_{N}\;\delta \left(E_{0}-\sum _{i=1}^{N}{\frac {{\vec {p}}_{i}^{\;2}}{2m}}\right) $

Die Ortsintegrationen ließen sich einfach ausführen. Nun geht man über zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 3N -dimensionalen Kugelkoordinaten, um die Impulsintegration zu vereinfachen. Der Radius ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p=(\sum\nolimits_{i=1}^{N}\vec{p}_{i}^{\;2})^{1/2} , somit schreibt sich ein Volumenelement als Radiuselement Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): dp mal Oberflächenelement Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p^{3N-1}d\Omega_{3N} .

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Z_{m}(E_{0})=\frac{V^{N}}{N!(2\pi\hbar)^{3N}}\int d\Omega_{3N}\int_{0}^{\infty}dp\, p^{3N-1}\,\delta(E_{0}-p^{2}/2m)

Das Integral über Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): d\Omega_{3N} ist die Oberfläche (Sphäre) einer 3N-dimensionalen Einheitskugel und beträgt:

$ S_{3N-1}={\frac {2\pi ^{\frac {3N}{2}}}{\Gamma ({\frac {3N}{2}})}}={\frac {2\pi ^{\frac {3N}{2}}}{({\frac {3N}{2}}-1)!}} $

Die Delta-Funktion lässt sich umschreiben zu:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \delta(E_{0}-p^{2}/2m)=\frac{m}{\sqrt{2mE_{0}}}\left[\delta(\sqrt{2mE_{0}}-p)+\delta(\sqrt{2mE_{0}}+p)\right]

Ergibt eingesetzt in die Zustandssumme:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{align} Z_{m}(E_{0}) & = \frac{V^{N}}{N!(2\pi\hbar)^{3N}}\frac{2\pi^{\frac{3N}{2}}}{(\frac{3N}{2}-1)!}\frac{m}{\sqrt{2mE_{0}}}\underbrace{\int_{0}^{\infty}dp\, p^{3N-1}\,\left[\delta(\sqrt{2mE_{0}}-p)+\delta(\sqrt{2mE_{0}}+p)\right]}_{\sqrt{2mE_{0}}^{3N-1}}\\ & = \frac{V^{N}}{N!(2\pi\hbar)^{3N}}\frac{(2\pi mE_{0})^{\frac{3N}{2}}}{(\frac{3N}{2})!}\frac{3N}{2E_{0}} \end{align}

Im Grenzfall großer Teilchenzahlen kann man die Fakultät mit der Stirling-Formel bis zur zweiten Ordnung entwickeln: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): N!\approx N^{N}e^{-N}\sqrt{2\pi N} :

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Z_{m}(E_{0})=\frac{V^{N}}{N^{N}e^{-N}\sqrt{2\pi N}(2\pi\hbar)^{3N}}\frac{(2\pi mE_{0})^{\frac{3N}{2}}}{(\frac{3N}{2})^{\frac{3N}{2}}e^{-\frac{3N}{2}}\sqrt{3\pi N}}\frac{3N}{2E_{0}}=\left(\frac{V}{N}\right)^{N}\left(\frac{4\pi mE_{0}}{3N(2\pi\hbar)^{2}}\right)^{\frac{3N}{2}}e^{\frac{5N}{2}}\frac{3}{2\sqrt{6}\pi E_{0}}

Die Entropie ergibt sich nun aus:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S=k_\mathrm{B} \ln Z_{m}(E_{0})=k_{{\rm B}}N\ln\left(\frac{V}{N}\right)+k_{{\rm B}}\frac{3N}{2}\ln\left(\frac{4\pi mE_{0}}{3N(2\pi\hbar)^{2}}\right)+k_\mathrm{B} \frac{5N}{2} + k_\mathrm{B} \ln\left(\frac{3}{2\sqrt{6}\pi E_{0}}\right)

Für große Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): N kann man den letzten Summanden vernachlässigen. Umsortieren liefert die Sackur-Tetrode-Gleichung:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S = k_\mathrm{B} N\ln\left[\left(\frac{V}{N}\right)\left(\frac{E_{0}}{N}\right)^{\frac{3}{2}}\right]+\frac{3}{2}k_\mathrm{B} N\left[\ln\left(\frac{4\pi m}{3(2\pi\hbar)^{2}}\right)+\frac{5}{3}\right]

Der Fall eines harmonischen Fallenpotentials wird als Erweiterung in[1] diskutiert.

Einzelnachweise

  1. Martin Ligare: Classical thermodynamics of particles in harmonic traps. In: American Journal of Physics. 78. Jahrgang, Nr. 8, 2010, S. 815, doi:10.1119/1.3417868.