Unter einer Schraubung versteht man in der Geometrie des dreidimensionalen Raumes V eine Abbildung, die aus einer Hintereinanderausführung einer Parallelverschiebung mit Verschiebevektor $ v $ und einer Drehung um eine Gerade $ g $ besteht, bei der $ v $ parallel zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): g ist. Die Reihenfolge, d. h. ob zuerst die Drehung oder die Verschiebung ausgeführt wird, spielt für das Ergebnis keine Rolle.
In der Kristallographie sind Schraubenachsen mögliche Symmetrieelemente einer Raumgruppe.
Eine Schraubung stellt eine Isometrie auf V dar, da sie eine Verknüpfung zweier Isometrien ist.
Schraubungen spielen besonders in der diskreten Geometrie eine Rolle, etwa bei der Klassifizierung der Isometrien in Dimension 3. Isometrien in dreidimensionalen Vektorräumen lassen sich nach geometrischen Gesichtspunkten in 7 Typen unterteilen, neben der Schraubung findet man:
In einer Raumgruppe können nur Schraubenachsen vorkommen, die mit dem Translationsgitter der Gruppe verträglich sind. Daher kann es in einer Raumgruppe nur n-zählige Drehachsen geben, mit n = 2, 3, 4 oder 6.
Da diese nach n-maliger Wiederholung wieder die Identität ergeben, können sie nur mit einem Translationsvektor verknüpft sein, der nach n-facher Wiederholung einem Vektor des Gitters entspricht. Das ist nur der Fall, wenn dessen Länge in Richtung der Drehachse ein m-faches des n-ten Bruchteils der Gittertranslation beträgt, mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 0 < m < n .
Das Hermann-Mauguin-Symbol für diese Schraubenachsen ist ein tiefgestelltes m hinter dem Symbol für die Drehachse n: nm.
41bedeutet also eine 4-zählige Schraubenachse, bei der bei jeder Drehung um 360°/4 = 90° eine Translation in Richtung der Drehachse von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tfrac{m}{n} = \tfrac{1}{4} Gitterkonstanten hinzukommt.
Im Folgenden sind alle in den 230 Raumgruppen vorkommenden Schraubenachsen aufgeführt:
In Klammern zusammengefasst sind dabei Paare enantiomorpher Schraubenachsen, die sich nur durch den Drehsinn unterscheiden:
Diese beiden Symmetrieelemente sind besonders schwer voneinander zu unterscheiden.
Der florentiner Mathematiker Giulio Mozzi[1] (1730–1813) erkannte als erster,[2] dass jede Bewegung eines Starrkörpers als Schraubung dargestellt werden kann, d. h. als Translation eines Bezugspunkts und Drehung um den Bezugspunkt mit einer Drehachse, die durch die (Richtung der) Geschwindigkeit des Bezugspunkts gegeben ist.
Der Bezugspunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec r ermittelt sich wie folgt aus der Bewegung des Starrkörpers, die sich immer darstellen lässt als Translation Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \dot{\vec b} eines Punkts $ {\vec {b}} $ und die Winkelgeschwindigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec\omega des Starrkörpers um diesen Punkt:
Darin ist
Dann ist auch
mit
und
und beliebigem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho\in\R . Das Rechenzeichen „·“ bildet das Skalarprodukt.
Anstatt einen Partikel
Das Ergebnis ist in beiden Fällen dasselbe: der betrachtete Partikel liegt am Ende an der neuen Position (2|2|0) und ist um 180°=$ \pi $ gedreht.