Die Variationsmethode ist in der Quantenmechanik ein Näherungsverfahren, um eine obere Schranke für Eigenwerte einer quantenmechanischen Observablen mit diskretem Spektrum zu finden. Eine Verallgemeinerung der Methode führt auf das Min-Max-Prinzip.
Das Verfahren basiert darauf, dass der Eigenwert des Grundzustands eine untere Schranke für den Erwartungswert der Messung der Observablen ist: Ist $ g_{i} $ die Entartung eines Eigenwertes $ i $, so lässt sich ein beliebiger Zustand als
schreiben, wobei die $ |\psi _{i,j}\rangle $ ein vollständiges Orthonormalsystem bilden. Für den Erwartungswert des Zustands bei Messung einer Observablen $ H $ mit Eigenwerten $ E_{i} $ gilt dann
Es lässt sich demnach eine obere Schranke für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E_0 finden, wenn man für eine Schar von Zuständen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |\psi_\alpha\rangle den Erwartungswert berechnet und das Infimum sucht:
Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |\psi_0\rangle die Eigenfunktion zu einem (nicht entarteten) Grundzustand mit Eigenwert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E_0 , so lässt sich für einen beliebigen Zustand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |\psi\rangle schreiben
wo $ |\varphi \rangle \perp |\psi _{0}\rangle $. Zerlegt man Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |\varphi\rangle wie oben in Eigenzustände, erhält man unter der Nebenbedingung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \langle\varphi|\psi_0\rangle=0
da in der Summe der Wert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): i=0 fehlt.
Die Suche nach weiteren Eigenzuständen erfolgt analog, wobei dann unter Orthogonalität zu mehreren Teilräumen, die die niedrigeren Eigenwerte aufspannen, zu minimieren ist.