W-Boson | |
---|---|
Klassifikation | |
Elementarteilchen Boson Eichboson | |
Eigenschaften [1] | |
Ladung | ±1 e (±1.602 · 10−19 C) |
Masse | 1,433 · 10−25 kg |
Spin | 1 |
mittlere Lebensdauer | 3 · 10−25 s |
Zerfallsbreite | 2,085(42) GeV |
Wechselwirkungen | schwach elektromagnetisch Gravitation |
Das W-Boson ist ein Eichboson und damit ein Elementarteilchen. Es vermittelt ebenso wie das mit ihm verwandte Z-Boson die schwache Wechselwirkung, eine der fundamentalen Grundkräfte der Physik. Während das Z-Boson elektrisch neutral ist, trägt das W-Boson eine elektrische Ladung; man unterscheidet W+ und W−, sie sind gegenseitig Antiteilchen. Das W-Boson ist verantwortlich für die geladenen Ströme der schwachen Wechselwirkung.
W-Boson steht für W = weak (engl.) = schwach[2] und Boson für ein Teilchen mit ganzzahligem Spin. Die W-Bosonen wurden und werden auch intermediäre Vektorbosonen genannt.[2]
Das W-Boson hat mit über 80 GeV/c² fast das 86-fache der Protonenmasse, es ist also extrem schwer. Seine Zerfallsbreite beträgt 2,085 ± 0,042 GeV, was einer extrem kurzen Lebensdauer von 3e-25 s entspricht. Es zerfällt zu 32 % in Leptonen und zu 68 % in Hadronen. Im Gegensatz zum Photon und dem Z0-Boson ist es elektrisch geladen und hat, wie diese, den Spin 1. W-Bosonen sind immer linkshändig[3] und können daher die schwache Wechselwirkung nur zwischen linkshändigen Teilchen vermitteln (maximale Paritätsverletzung). Aus diesem Grund kann man dem W-Boson keine Parität zuordnen.
W-Bosonen können die schwache Wechselwirkung sowohl zwischen Leptonen als auch zwischen Quarks vermitteln. Dabei wird jeweils die Art der wechselwirkenden Teilchen verändert (ihre elektrische Ladung und ihr schwacher Isospin).
Beispielsweise kann sich das Elektron (ein negativ geladenes Lepton) durch Emission eines W−-Bosons in das zugehörige, elektrisch neutrale Elektron-Neutrino umwandeln.
Bei den Quarks vermitteln die W-Bosonen die Umwandlung verschiedener Flavours ineinander. Ein solcher Prozess findet z. B. beim radioaktiven Beta-Zerfall statt, bei dem in einem Neutron des Atomkerns ein Down-Quark (Ladung −1⁄3 e) in ein Up-Quark (Ladung +2⁄3 e) umgewandelt wird. Dadurch wird das Neutron zu einem Proton, und die Kernladungszahl nimmt um eins zu. Das bei diesem Prozess abgestrahlte W-Boson ist – in Übereinstimmung mit der Ladungserhaltung – einfach negativ geladen (−1 e), also ein W−-Boson.
Die schwache Wechselwirkung wird auch vom Z-Boson vermittelt, das jedoch nicht elektrisch geladen ist. Da flavour changing neutral currents (kurz FCNC) im Standardmodell der Teilchenphysik nicht als elementare Wechselwirkung existieren, könnte das Z-Boson selbst dann nicht zur Umwandlung von Quarks beitragen, wenn damit keine Ladungsänderung verbunden wäre.
Aufgrund der hohen Masse des W-Bosons ist die Reichweite der schwachen Wechselwirkung sehr gering (ca. 10−18 m, etwa ein Tausendstel Protondurchmesser). Prozesse wie der Betazerfall, deren Energien um mehrere Größenordnungen unter der Ruheenergie des W-Bosons liegen, können daher näherungsweise als Wechselwirkung von vier Teilchen in einem Punkt beschreiben werden (Fermi-Wechselwirkung).
W-Bosonen wurden 1967 im Rahmen der Theorie der elektroschwachen Wechselwirkung vorhergesagt. Als reelle Teilchen konnten sie aber erst erzeugt werden, als Teilchenbeschleuniger mit ausreichender Energie zur Verfügung standen.
Eine Möglichkeit der Erzeugung ist die Reaktion eines Quarks und eines Antiquarks gemäß
Unerlässlich ist dabei, dass hier Strahlen frontal kollidieren, denn beim Aufprall auf ein ruhendes Target würde zu viel Energie ungenutzt bleiben.
Die o. g. W-Boson-Erzeugung lässt sich erreichen durch:
Mit pp-Kollisionen wurden am Super Proton Synchrotron (SPS) des CERN, das in diesem Modus SppS genannt wurde, im Januar 1983 erstmals reelle W-Bosonen erzeugt. Nachgewiesen wurden sie in den Detektoren UA1 und UA2.
Die Impulsanteile der reagierenden (Anti-)quarks in den (Anti-)protonen sind nicht bekannt. Dies führt zu Ungenauigkeiten in der Bestimmung der Masse des W-Bosons. Für Präzisionsmessungen ist die Erzeugung von W-Boson-Paaren gemäß
besser geeignet. Die Erzeugung von Elektron- und Positronstrahlen der erforderlichen Energie gelang 1998 am Large Electron-Positron Collider (LEP) des CERN nach dem Ausbau zum LEP2.