71.241.251.97 (Diskussion) |
168.224.160.22 (Diskussion) (→Aufbau) |
||
Zeile 1: | Zeile 1: | ||
[[Datei:Seifenblasen EO5P3371-2.jpg|mini | [[Datei:Seifenblasen EO5P3371-2.jpg|mini|Seifenblasen]] | ||
Eine '''Seifenblase''' ist ein dünner [[Dünne Schichten|Film]] aus [[Seife]]nwasser, der eine gewisse Menge Luft oder anderes Gas einschließt und eine hohle [[Kugel]] bildet, die häufig [[Irisieren|irisiert]] und schillert. Eine ''Seifenhaut'' ist ein ebener oder gekrümmter dünner Film, eine [[Membran]] aus Seifenwasser, beispielsweise aufgespannt in einem festen Ring. [[Schaum|Seifenschaum]] besteht aus mehreren Seifenblasen. Seifenblasen können bewusst erzeugt werden, zum Beispiel durch das Blasen von Luft in eine auf einem Ring aufgespannte Seifenhaut. | |||
Frisch hergestellte Seifenblasen zeigen elastische Körperschwingung, entlassen unter der Wirkung von Schwerkraft mitunter Wassertropfen, werden von Luftströmungen vertragen oder auch getragen, trocknen zunehmend (wenn die sie umgebende Luft nicht wassergesättigt ist), werden mit der Zeit empfindlicher auf Beanspruchung durch einen Luftstoß oder gar Berührung mit der (trockenen) Oberfläche eines anderen Körpers. Seifenblasen platzen häufig nach kurzer Zeit, mitunter spontan. | |||
Seifenblasen lange in der Luft und am Leben zu erhalten, besondere Figuren oder Größe zu erzielen ist Gegenstand künstlerischer Handarbeit. Seifenblasen sind Untersuchungsgegenstand der Physik, Chemie und Geometrie und dienen als anschauliches Modell für [[Minimalfläche]]n. | |||
Seifenblasen können händisch-mundgeblasen oder maschinell erzeugt werden. Sie werden als [[Bühneneffekt]] und zum Kinderspiel, aber auch für Erwachsene als faszinierend-vergnüglichen Zeitvertreib oder als physikalisch-interessantes Phänomen genutzt. | |||
Wegen dieser leichten Vergänglichkeit wurde ,Seifenblase‘ zu einer [[Metapher]] für etwas, das zwar anziehend, aber dennoch inhalts- und gehaltlos ist. Dies spiegelt sich zum Beispiel in der Redewendung „Der Traum zerplatzte wie eine Seifenblase“ oder im Synonym ,Seifenblasenwirtschaft‘ für ''[[Bubble Economy]]''. | Wegen dieser leichten Vergänglichkeit wurde ,Seifenblase‘ zu einer [[Metapher]] für etwas, das zwar anziehend, aber dennoch inhalts- und gehaltlos ist. Dies spiegelt sich zum Beispiel in der Redewendung „Der Traum zerplatzte wie eine Seifenblase“ oder im Synonym ,Seifenblasenwirtschaft‘ für ''[[Bubble Economy]]''. | ||
Zeile 8: | Zeile 13: | ||
In der [[Kunst]] wird spätestens seit dem [[Barock]] die Seifenblase durchgängig [[Ikonografie|ikonographisch]] als ein [[Vanitas]]symbol benutzt und spiegelt sowohl die Schönheit als auch die Flüchtigkeit des menschlichen Lebens wider. | In der [[Kunst]] wird spätestens seit dem [[Barock]] die Seifenblase durchgängig [[Ikonografie|ikonographisch]] als ein [[Vanitas]]symbol benutzt und spiegelt sowohl die Schönheit als auch die Flüchtigkeit des menschlichen Lebens wider. | ||
Seifenblasen lösen auf | Seifenblasen lösen auf [[physik]]alische Weise komplexe räumliche Probleme in der [[Mathematik]], da sie im Gleichgewichtszustand die kleinste Oberfläche zwischen [[Punkt (Geometrie)|Punkten]] und Kanten bilden. | ||
== Aufbau == | == Aufbau == | ||
[[Datei:Schaumbläschen.svg| | [[Datei:Schaumbläschen.svg|mini|Struktur einer Seifenblase mit einem [[Anionische Tenside|anionischen Tensid]] ]] | ||
Seifenblasen bestehen aus einem dünnen | Seifenblasen bestehen aus einem dünnen Wasserfilm, an dem sich innen und außen [[Amphiphilie|amphiphile]] Seifenmoleküle anlagern mit einer dem Wasser zugewandten polaren, [[Hydrophilie|hydrophilen]] Carboxylat-Gruppe und einem dem Wasser abgewandten unpolaren, [[Hydrophobie|hydrophoben]] Alkylrest. | ||
[[Liposom]]en weisen einen ähnlichen Aufbau wie Seifenblasen auf: sie sind ebenfalls kugelförmig und auch deren Hülle besteht aus amphiphilen Molekülen, jedoch zeigen hier die hydrophilen Teile der Moleküle nach außen. Selbes bei [[Biomembran]]en, bei denen sich das Wasser ''außen'' und nicht wie bei Seifenblasen ''in'' der Hülle befindet. Liposomen und Biomembranen bestehen beide aus einer [[Doppellipidschicht]]. | |||
=== | === Vergänglichkeit === | ||
Eine Seifenblase entsteht, wenn sich ein dünner Wasserfilm mit Seifenmolekülen vermischt. Beim Aufblasen entsteht eine Kugelform. Infolge des [[gravitation]]sbedingten Auslaufens (''Drainage'') der zwischen den Seifenfilmoberflächen befindlichen Flüssigkeit dünnt eine Seifenblase in ihrem oberen Teil zunehmend aus. Man kann das beobachten, wenn man einen Seifenfilm auf eine Tassenöffnung zieht und dann senkrecht hält. Zudem erfolgt im Laufe des Auslaufprozesses eine Anreicherung von Seifenfilm-stabilisierenden [[Tensid]]molekülen im unteren Bereich der Seifenblase, | Eine Seifenblase entsteht, wenn sich ein dünner Wasserfilm mit Seifenmolekülen vermischt. Beim Aufblasen entsteht eine Kugelform. Infolge des [[gravitation]]sbedingten Auslaufens (''Drainage'') der zwischen den Seifenfilmoberflächen befindlichen Flüssigkeit dünnt eine Seifenblase in ihrem oberen Teil zunehmend aus. Man kann das beobachten, wenn man einen Seifenfilm auf eine Tassenöffnung zieht und dann senkrecht hält. Zudem erfolgt im Laufe des Auslaufprozesses eine Anreicherung von Seifenfilm-stabilisierenden [[Tensid]]molekülen im unteren Bereich der Seifenblase, so dass deren obere Region infolge des relativen Mangels von an die Oberfläche adsorbierten Tensidmolekülen zusätzlich destabilisiert wird. Tatsächlich platzen die meisten Seifenblasen im oberen Teil. Das Verdunsten kann man behindern, indem man die Seifenblase oder einen Seifenfilm in ein [[Weckglas|Einmachglas]] „sperrt“. Dadurch verlängert sich die Lebensdauer der Blase erheblich. | ||
Die Schichtdicke der Seifenblase lässt sich beobachten: Spiegelt die Oberfläche in bunten [[Interferenz (Physik)#Interferenzfarben|Interferenzfarben]], ist die Schichtdicke vergleichbar mit der Wellenlänge des Lichts. <!-- Wechselt die Farbe von rötlich nach blau, nimmt die Dicke auf 300 nm ab. [Stimmt nicht. siehe Diskussion „Widerspruch/Ungenauigkeit in 1.1. (Platzen) und 2.4 (Interferenz)“, jfieres] --> Bei abnehmender Schichtdicke wird die Seifenhaut zunächst farblos und zum Schluss dunkel<!--Quelle: Gerthsen Physik-->. | Die Schichtdicke der Seifenblase lässt sich beobachten: Spiegelt die Oberfläche in bunten [[Interferenz (Physik)#Interferenzfarben|Interferenzfarben]], ist die Schichtdicke vergleichbar mit der Wellenlänge des Lichts. <!-- Wechselt die Farbe von rötlich nach blau, nimmt die Dicke auf 300 nm ab. [Stimmt nicht. siehe Diskussion „Widerspruch/Ungenauigkeit in 1.1. (Platzen) und 2.4 (Interferenz)“, jfieres] --> Bei abnehmender Schichtdicke wird die Seifenhaut zunächst farblos und zum Schluss dunkel<!--Quelle: Gerthsen Physik-->. | ||
Zeile 55: | Zeile 60: | ||
Die leicht unterschiedlichen Weglängen der beiden Lichtstrahlen (und besondere Effekte an der äußeren Wand, s. u.) führen zu einem [[Gangunterschied]] zwischen ihnen. Wenn der Gangunterschied <!-- Im Allgemeinen: (N+1/2)Lambda mit n=1..inf --> genau die Hälfte einer Wellenlänge beträgt, fallen die Wellentäler des einen Strahls mit den Wellenbergen des anderen zusammen (s. zweites Bild). In der Summe ergibt sich Null, also eine Auslöschung der entsprechenden Farbe. Dies nennt man destruktive Interferenz, im Gegensatz zur konstruktiven Interferenz, bei der sich die beiden Strahlen durch einen anderen Gangunterschied positiv überlagern (drittes Bild). | Die leicht unterschiedlichen Weglängen der beiden Lichtstrahlen (und besondere Effekte an der äußeren Wand, s. u.) führen zu einem [[Gangunterschied]] zwischen ihnen. Wenn der Gangunterschied <!-- Im Allgemeinen: (N+1/2)Lambda mit n=1..inf --> genau die Hälfte einer Wellenlänge beträgt, fallen die Wellentäler des einen Strahls mit den Wellenbergen des anderen zusammen (s. zweites Bild). In der Summe ergibt sich Null, also eine Auslöschung der entsprechenden Farbe. Dies nennt man destruktive Interferenz, im Gegensatz zur konstruktiven Interferenz, bei der sich die beiden Strahlen durch einen anderen Gangunterschied positiv überlagern (drittes Bild). | ||
Die tatsächliche Farbe der Seifenblase (d. h. die Wellenlänge des ausgelöschten Lichtes, beziehungsweise die Länge des Gangunterschiedes), ist abhängig von der Dicke der Seifenhaut und des Beleuchtungswinkels der Oberfläche. Die Abhängigkeit von der Schichtdicke kann beobachtet werden, wenn die Seifenblase durch Verdunstung ausdünnt. Mit abnehmender Dicke werden jeweils andere Farben ausgelöscht. Letztlich, wenn die Dicke der Wand kleiner ist als die Hälfte der kleinsten Wellenlänge sichtbaren Lichts, löschen sich keine sichtbaren Lichtwellen gegenseitig aus und es können keine [[Komplementärfarbe]]n mehr beobachtet werden. In diesem Zustand ist die Seifenblasenwand dünner als zwei Zehntausendstel eines Millimeters. Bei noch kleinerer Schichtdicke kann man aufgrund anderer Effekte (s. u.) dunkle Flecken beobachten | Die tatsächliche Farbe der Seifenblase (d. h. die Wellenlänge des ausgelöschten Lichtes, beziehungsweise die Länge des Gangunterschiedes), ist abhängig von der Dicke der Seifenhaut und des Beleuchtungswinkels der Oberfläche. Die Abhängigkeit von der Schichtdicke kann beobachtet werden, wenn die Seifenblase durch Verdunstung ausdünnt. Mit abnehmender Dicke werden jeweils andere Farben ausgelöscht. Letztlich, wenn die Dicke der Wand kleiner ist als die Hälfte der kleinsten Wellenlänge sichtbaren Lichts, löschen sich keine sichtbaren Lichtwellen gegenseitig aus und es können keine [[Komplementärfarbe]]n mehr beobachtet werden. In diesem Zustand ist die Seifenblasenwand dünner als zwei Zehntausendstel eines Millimeters. Bei noch kleinerer Schichtdicke kann man aufgrund anderer Effekte (s. u.) dunkle Flecken beobachten – sie wird wahrscheinlich im nächsten Moment zerplatzen. | ||
Die Voraussetzung für Interferenzerscheinungen, die [[Kohärenz (Physik)|Kohärenz]] der Wellenzüge, ist wegen der Dünne der Schicht erfüllt. <!-- Durch die gleichzeitige Reflexion und Transmission erhält man zwei Wellenspektren, deren Phasen der Einzelwellen notwendigerweise gleich sind. [Kommentar des loeschers: Die Phasen sind NICHT gleich, sonst gäbe es keine Interferenz. und ausserdem, was ist das fuer eine Begruendung fuer Kohaerenz?] --> Zusätzlich zur unterschiedlichen geometrischen Weglänge trägt hier noch ein anderer Effekt zum Gangunterschied bei: | Die Voraussetzung für Interferenzerscheinungen, die [[Kohärenz (Physik)|Kohärenz]] der Wellenzüge, ist wegen der Dünne der Schicht erfüllt. <!-- Durch die gleichzeitige Reflexion und Transmission erhält man zwei Wellenspektren, deren Phasen der Einzelwellen notwendigerweise gleich sind. [Kommentar des loeschers: Die Phasen sind NICHT gleich, sonst gäbe es keine Interferenz. und ausserdem, was ist das fuer eine Begruendung fuer Kohaerenz?] --> Zusätzlich zur unterschiedlichen geometrischen Weglänge trägt hier noch ein anderer Effekt zum Gangunterschied bei: | ||
Zeile 72: | Zeile 77: | ||
=== Gefrorene Seifenblasen === | === Gefrorene Seifenblasen === | ||
[[Datei:Frozen Ice Bubble.jpg|miniatur|Gefrorene Seifenblase auf Schnee bei −7 °C]] | |||
Die Membran einer Seifenblase kann bei tiefen Temperaturen gefrieren, ohne zu zerplatzen. Das geschieht mit fliegenden Seifenblasen bei Temperaturen unter −10 °C im Freien oder mit anhaftenden Seifenblasen in der Gefriertruhe. Sie sind bis zu 10 Minuten stabil. Manchmal überstehen gefrorene Seifenblasen eine Landung auf hartem und kaltem Untergrund.<ref>Ashley Leonard: [http://www.ehow.com/how_2252951_make-frozen-bubble.html How to Make a Bubble That Doesn't Pop] ehow.com, o. J., abgerufen 24. Jänner 2017.</ref> | |||
Die Membran einer Seifenblase kann bei tiefen Temperaturen gefrieren, ohne zu zerplatzen. Das geschieht mit fliegenden Seifenblasen bei Temperaturen unter −10 °C im Freien oder mit anhaftenden Seifenblasen in der Gefriertruhe. Sie sind bis zu 10 Minuten stabil. Manchmal überstehen gefrorene Seifenblasen eine Landung auf hartem und kaltem Untergrund.<ref>Ashley Leonard: [http://www.ehow.com/how_2252951_make-frozen-bubble.html How to Make a Bubble That Doesn't Pop] ehow.com, o.J., abgerufen 24. Jänner 2017.</ref> | |||
Das Gefrieren einer auf Schnee liegenden Seifenblase erfolgt typisch durch Wachsen von fiederartigen Kristallen ab dem als Keim wirkenden anliegenden Schnee und kann etwa 2 Sekunden dauern.<ref>[https://plus.google.com/+pilleuspulcher/posts/3ZbXqEr5iYc Gefrierende Seifenblasen im Schnee fotografiert ...] pilleus pulcher, google+, 23. Jänner 2017, abgerufen 25. Jänner 2017. – Bilderserie.</ref> | Das Gefrieren einer auf Schnee liegenden Seifenblase erfolgt typisch durch Wachsen von fiederartigen Kristallen ab dem als Keim wirkenden anliegenden Schnee und kann etwa 2 Sekunden dauern.<ref>[https://plus.google.com/+pilleuspulcher/posts/3ZbXqEr5iYc Gefrierende Seifenblasen im Schnee fotografiert ...] pilleus pulcher, google+, 23. Jänner 2017, abgerufen 25. Jänner 2017. – Bilderserie.</ref> | ||
== Verwendung == | == Verwendung == | ||
Zeile 100: | Zeile 104: | ||
Ein Seifenfilm formt eine natürliche [[Minimalfläche]]. Minimalflächen stehen schon seit dem 19. Jahrhundert im Blickpunkt mathematischer Forschung. Ein wesentlicher Beitrag dazu waren die Experimente des belgischen Physikers [[Joseph Plateau]] (vgl. [[Plateau-Problem]]). | Ein Seifenfilm formt eine natürliche [[Minimalfläche]]. Minimalflächen stehen schon seit dem 19. Jahrhundert im Blickpunkt mathematischer Forschung. Ein wesentlicher Beitrag dazu waren die Experimente des belgischen Physikers [[Joseph Plateau]] (vgl. [[Plateau-Problem]]). | ||
Ein Beispiel: Schon 1884 wurde von [[ | Ein Beispiel: Schon 1884 wurde von [[Hermann Amandus Schwarz]] bewiesen, dass eine kugelförmige Seifenblase die kleinstmögliche Oberfläche eines bestimmten Luftvolumens besitzt. Jedoch erst in den letzten Jahrzehnten wurde mit Hilfe der [[Geometrische Maßtheorie|geometrischen Maßtheorie]] eine angemessene Sprache für solche Probleme gefunden. Im Jahr 2000 gelang [[Michael Hutchings]], [[Frank Morgan (Mathematiker)|Frank Morgan]], [[Manuel Ritoré]] und [[Antonio Ros]] der Beweis, dass zwei verbundene Seifenblasen (eine sogenannte ''[[Doppelblase]]'') zwei verschieden große Luftvolumina mit der kleinstmöglichen Oberfläche umschließen (auch ''[[Doppelblasen-Theorem]]''; {{EnS|Double Bubble Theorem}}).<!--Wo ist das Ende dieses Satzes?--><ref>Michael Hutchings; Frank Morgan; Manuel Ritoré; Antonio Ros: ''Proof of the double bubble conjecture''. In: ''Announc. Amer. Math. Soc.'', 2000, 6 S. 45–49, [http://www.ams.org/era/2000-06-06/S1079-6762-00-00079-2/S1079-6762-00-00079-2.pdf pdf].</ref> | ||
=== Seifenblasen in der Architektur === | === Seifenblasen in der Architektur === | ||
Lange Zeit waren Seifenblasen das einzige Mittel zur zuverlässigen [[Winkelmessung#Neigungsmessung|Bestimmung der optimalen Neigung]] von nicht-trivialen Dachkonstruktionen auf Basis von Seilsystemen und Tragbögen. Dazu wurde die Konstruktion als Rahmen aus Draht geformt und dann in Seifenwasser getaucht. Beim vorsichtigen Herausziehen ergaben sich Kurvenverläufe, die als das experimentell gefundene Optimum der Form zu gelten hatten. Durch Fotografie und andere Methoden wurde das Ergebnis fixiert und auf die zugehörigen Konstruktionszeichnungen übertragen. Die jeweilige [[Baustatik|Statik]] für die vorgegebene Form ließ sich dann mit anderen Methoden bestimmen. Ein Beispiel dieser Methodik ist das [[Olympiagelände (München)|Olympiagelände München]].<ref>Ansgar Mönter: [ | Lange Zeit waren Seifenblasen das einzige Mittel zur zuverlässigen [[Winkelmessung#Neigungsmessung|Bestimmung der optimalen Neigung]] von nicht-trivialen Dachkonstruktionen auf Basis von Seilsystemen und Tragbögen. Dazu wurde die Konstruktion als Rahmen aus Draht geformt und dann in Seifenwasser getaucht. Beim vorsichtigen Herausziehen ergaben sich Kurvenverläufe, die als das experimentell gefundene Optimum der Form zu gelten hatten. Durch Fotografie und andere Methoden wurde das Ergebnis fixiert und auf die zugehörigen Konstruktionszeichnungen übertragen. Die jeweilige [[Baustatik|Statik]] für die vorgegebene Form ließ sich dann mit anderen Methoden bestimmen. Ein Beispiel dieser Methodik ist das [[Olympiagelände (München)|Olympiagelände München]].<ref>Ansgar Mönter: [https://www.nw.de/lokal/bielefeld/mitte?em_cnt=4854978 ''Der mit der Seifenblase.''] In: ''[[Neue Westfälische|nw.de]]''. 17. August 2011, abgerufen am 11. Dezember 2020.</ref> | ||
=== Seifenblasen als Spielzeug === | === Seifenblasen als Spielzeug === | ||
[[Datei:Bubbles - Sir John Everett Millais.png|mini|[[John Everett Millais]]: ''Bubbles'' (1886)]] | [[Datei:Bubbles - Sir John Everett Millais.png|mini|[[John Everett Millais]]: ''Bubbles'' (1886)]] | ||
[[File:Zeppelin-Denkmal Konstanz Seifenblasen 2021.jpg|thumb|Denkmal für [[Ferdinand von Zeppelin]] in [[Konstanz]] (2021)]] | |||
Eine der frühesten künstlerischen Darstellungen von Seifenblasen als Kinderspielzeug findet sich in [[Pieter Bruegel der Ältere|Pieter Bruegels]] Gemälde ''[[Die Kinderspiele]]'' von 1560, woraus sich schließen lässt, dass Seifenblasen bereits seit mindestens 500 Jahren von Kindern zum Zwecke der Unterhaltung verwendet werden. Die Massenproduktion von Seife begann im 19. Jahrhundert, wobei der Seifenhersteller ''Pears'' zur Vermarktung insbesondere auch [[John Everett Millais]]’ Gemälde ''Seifenblasen'' („Bubbles“) nutzte, das dessen Enkel beim Spiel mit Seifenblasen zeigt. | Eine der frühesten künstlerischen Darstellungen von Seifenblasen als Kinderspielzeug findet sich in [[Pieter Bruegel der Ältere|Pieter Bruegels]] Gemälde ''[[Die Kinderspiele]]'' von 1560, woraus sich schließen lässt, dass Seifenblasen bereits seit mindestens 500 Jahren von Kindern zum Zwecke der Unterhaltung verwendet werden. Die Massenproduktion von Seife begann im 19. Jahrhundert, wobei der Seifenhersteller ''Pears'' zur Vermarktung insbesondere auch [[John Everett Millais]]’ Gemälde ''Seifenblasen'' („Bubbles“) nutzte, das dessen Enkel beim Spiel mit Seifenblasen zeigt. | ||
1948 entwickelte der Chemiker Rolf Hein eine neue Formel für ein Waschmittel, das allerdings den Nachteil hatte, zu sehr zu schäumen. Er ließ die flüssige Seife in Flaschen abfüllen, fügte eine Blasring aus einer zum Ring gebogenen feinen Federdrahtwendel mit Stiel hinzu und verkaufte das Produkt unter dem [[Marke (Marketing)|Markennamen]] ''[[Pustefix]]'' gezielt als Kinderspielzeug. Seitdem sind zur Herstellung von Seifenblasen vorwiegend Kombinationen von mit Lauge gefüllten Plastikröhrchen und | 1948 entwickelte der Chemiker Rolf Hein eine neue Formel für ein Waschmittel, das allerdings den Nachteil hatte, zu sehr zu schäumen. Er ließ die flüssige Seife in Flaschen abfüllen, fügte eine Blasring aus einer zum Ring gebogenen feinen Federdrahtwendel mit Stiel hinzu und verkaufte das Produkt unter dem [[Marke (Marketing)|Markennamen]] ''[[Pustefix]]'' gezielt als Kinderspielzeug. Seitdem sind zur Herstellung von Seifenblasen vorwiegend Kombinationen von mit Lauge gefüllten Plastikröhrchen und Pustering im Gebrauch.<ref>{{Internetquelle |url=https://www.pustefix.de/rund-um-pustefix/geschichte-der-firma-pustefix/ |titel=Die Geschichte der Firma Pustefix |werk=pustefix.de |abruf=2019-06-06}}</ref> | ||
== Literatur == | == Literatur == |
Eine Seifenblase ist ein dünner Film aus Seifenwasser, der eine gewisse Menge Luft oder anderes Gas einschließt und eine hohle Kugel bildet, die häufig irisiert und schillert. Eine Seifenhaut ist ein ebener oder gekrümmter dünner Film, eine Membran aus Seifenwasser, beispielsweise aufgespannt in einem festen Ring. Seifenschaum besteht aus mehreren Seifenblasen. Seifenblasen können bewusst erzeugt werden, zum Beispiel durch das Blasen von Luft in eine auf einem Ring aufgespannte Seifenhaut.
Frisch hergestellte Seifenblasen zeigen elastische Körperschwingung, entlassen unter der Wirkung von Schwerkraft mitunter Wassertropfen, werden von Luftströmungen vertragen oder auch getragen, trocknen zunehmend (wenn die sie umgebende Luft nicht wassergesättigt ist), werden mit der Zeit empfindlicher auf Beanspruchung durch einen Luftstoß oder gar Berührung mit der (trockenen) Oberfläche eines anderen Körpers. Seifenblasen platzen häufig nach kurzer Zeit, mitunter spontan.
Seifenblasen lange in der Luft und am Leben zu erhalten, besondere Figuren oder Größe zu erzielen ist Gegenstand künstlerischer Handarbeit. Seifenblasen sind Untersuchungsgegenstand der Physik, Chemie und Geometrie und dienen als anschauliches Modell für Minimalflächen.
Seifenblasen können händisch-mundgeblasen oder maschinell erzeugt werden. Sie werden als Bühneneffekt und zum Kinderspiel, aber auch für Erwachsene als faszinierend-vergnüglichen Zeitvertreib oder als physikalisch-interessantes Phänomen genutzt.
Wegen dieser leichten Vergänglichkeit wurde ,Seifenblase‘ zu einer Metapher für etwas, das zwar anziehend, aber dennoch inhalts- und gehaltlos ist. Dies spiegelt sich zum Beispiel in der Redewendung „Der Traum zerplatzte wie eine Seifenblase“ oder im Synonym ,Seifenblasenwirtschaft‘ für Bubble Economy.
In der Kunst wird spätestens seit dem Barock die Seifenblase durchgängig ikonographisch als ein Vanitassymbol benutzt und spiegelt sowohl die Schönheit als auch die Flüchtigkeit des menschlichen Lebens wider.
Seifenblasen lösen auf physikalische Weise komplexe räumliche Probleme in der Mathematik, da sie im Gleichgewichtszustand die kleinste Oberfläche zwischen Punkten und Kanten bilden.
Seifenblasen bestehen aus einem dünnen Wasserfilm, an dem sich innen und außen amphiphile Seifenmoleküle anlagern mit einer dem Wasser zugewandten polaren, hydrophilen Carboxylat-Gruppe und einem dem Wasser abgewandten unpolaren, hydrophoben Alkylrest.
Liposomen weisen einen ähnlichen Aufbau wie Seifenblasen auf: sie sind ebenfalls kugelförmig und auch deren Hülle besteht aus amphiphilen Molekülen, jedoch zeigen hier die hydrophilen Teile der Moleküle nach außen. Selbes bei Biomembranen, bei denen sich das Wasser außen und nicht wie bei Seifenblasen in der Hülle befindet. Liposomen und Biomembranen bestehen beide aus einer Doppellipidschicht.
Eine Seifenblase entsteht, wenn sich ein dünner Wasserfilm mit Seifenmolekülen vermischt. Beim Aufblasen entsteht eine Kugelform. Infolge des gravitationsbedingten Auslaufens (Drainage) der zwischen den Seifenfilmoberflächen befindlichen Flüssigkeit dünnt eine Seifenblase in ihrem oberen Teil zunehmend aus. Man kann das beobachten, wenn man einen Seifenfilm auf eine Tassenöffnung zieht und dann senkrecht hält. Zudem erfolgt im Laufe des Auslaufprozesses eine Anreicherung von Seifenfilm-stabilisierenden Tensidmolekülen im unteren Bereich der Seifenblase, so dass deren obere Region infolge des relativen Mangels von an die Oberfläche adsorbierten Tensidmolekülen zusätzlich destabilisiert wird. Tatsächlich platzen die meisten Seifenblasen im oberen Teil. Das Verdunsten kann man behindern, indem man die Seifenblase oder einen Seifenfilm in ein Einmachglas „sperrt“. Dadurch verlängert sich die Lebensdauer der Blase erheblich.
Die Schichtdicke der Seifenblase lässt sich beobachten: Spiegelt die Oberfläche in bunten Interferenzfarben, ist die Schichtdicke vergleichbar mit der Wellenlänge des Lichts. Bei abnehmender Schichtdicke wird die Seifenhaut zunächst farblos und zum Schluss dunkel.
In der Schwerelosigkeit überleben Seifenblasen mit etwa einer Minute doppelt so lang wie auf der Erde. Die Blasenwand ist dicker und gleichmäßiger und übersteht auch einen Nadelstich.[1]
Die Erzeugung von Seifenblasen ist möglich, da die Oberfläche einer Flüssigkeit – in diesem Falle des Wassers – eine Oberflächenspannung besitzt, die zu einem elastischen Verhalten der Oberfläche führt. Häufig wird angenommen, dass die Seife nötig ist, um die Oberflächenspannung des Wassers zu vergrößern. Das Gegenteil ist jedoch der Fall: Die Oberflächenspannung des Seifenwassers ist nur etwa ein Drittel so groß wie die des Wassers. Seifenblasen mit reinem Wasser zu machen ist so schwierig, weil die Oberflächenspannung zu hoch ist, wodurch die Blase sofort zerplatzt. Zusätzlich verlangsamt die Seife die Verdunstung, so dass die Blasen länger halten. Der Gasdruck in einer Seifenblase ist höher als der Druck außerhalb, siehe dazu unter Young-Laplace-Gleichung.
Die Oberflächenspannung ist ebenfalls der Grund für die kugelförmige Gestalt der Seifenblasen. Durch Minimierung der Oberfläche zwingt sie die Blase in diese Form, da von allen möglichen Formen zu einem gegebenen Volumen die Kugel die kleinste Oberfläche aufweist. Ohne äußere Kräfte (insbesondere Schwerkraft in Kombination mit Luftreibung) würden alle Blasen ideale Kugelform besitzen.[2] Aufgrund ihres geringen Eigengewichts kommen Seifenblasen diesem Ideal in der Realität sehr nahe.
Wenn zwei Seifenblasen aufeinander treffen, wirken dieselben Prinzipien weiterhin, und die Blasen nehmen die Form mit der kleinsten Oberfläche an. Ihre gemeinsame Wand wölbt sich in die größere Blase hinein, da eine kleinere Seifenblase einen höheren Innendruck besitzt. Wenn beide Seifenblasen gleich groß sind, entsteht keine Wölbung, und die Trennwand ist flach.
Plateaus Regeln besagen, dass beim Zusammentreffen mehrerer Seifenblasen alle Winkel gleich groß sind. In einem Schaum mit vielen Blasen treffen immer jeweils drei Flächen in einem Winkel von 120° zusammen. Hierbei ist die Oberfläche gleichfalls minimal. Durch die gleiche Oberflächenspannung entsteht ein Kräftegleichgewicht. Jeweils vier Kanten treffen sich unter einem Winkel von etwa 109° 28′ 16″ in einem Knoten, auch als Vertex bezeichnet. Diese Regeln wurden im neunzehnten Jahrhundert aufgrund von experimentellen Untersuchungen vom belgischen Physiker Joseph Plateau aufgestellt.
Die schillernden Farben entstehen durch Interferenz von Lichtwellen an der dünnen Seifenhaut. Die Interferenz führt innerhalb eines bestimmten Betrachtungswinkels zur Auslöschung eines Teils des Farbspektrums. Der verbleibende Teil wird farbig wahrgenommen, da nur das komplette Farbspektrum weißes Licht ergibt.
Da die Wand einer Seifenblase eine gewisse Dicke hat, wird einfallendes Licht zweimal reflektiert – einmal an jeder Seite der Wand (siehe rechts). Die leicht unterschiedlichen Weglängen der beiden Lichtstrahlen (und besondere Effekte an der äußeren Wand, s. u.) führen zu einem Gangunterschied zwischen ihnen. Wenn der Gangunterschied genau die Hälfte einer Wellenlänge beträgt, fallen die Wellentäler des einen Strahls mit den Wellenbergen des anderen zusammen (s. zweites Bild). In der Summe ergibt sich Null, also eine Auslöschung der entsprechenden Farbe. Dies nennt man destruktive Interferenz, im Gegensatz zur konstruktiven Interferenz, bei der sich die beiden Strahlen durch einen anderen Gangunterschied positiv überlagern (drittes Bild).
Die tatsächliche Farbe der Seifenblase (d. h. die Wellenlänge des ausgelöschten Lichtes, beziehungsweise die Länge des Gangunterschiedes), ist abhängig von der Dicke der Seifenhaut und des Beleuchtungswinkels der Oberfläche. Die Abhängigkeit von der Schichtdicke kann beobachtet werden, wenn die Seifenblase durch Verdunstung ausdünnt. Mit abnehmender Dicke werden jeweils andere Farben ausgelöscht. Letztlich, wenn die Dicke der Wand kleiner ist als die Hälfte der kleinsten Wellenlänge sichtbaren Lichts, löschen sich keine sichtbaren Lichtwellen gegenseitig aus und es können keine Komplementärfarben mehr beobachtet werden. In diesem Zustand ist die Seifenblasenwand dünner als zwei Zehntausendstel eines Millimeters. Bei noch kleinerer Schichtdicke kann man aufgrund anderer Effekte (s. u.) dunkle Flecken beobachten – sie wird wahrscheinlich im nächsten Moment zerplatzen.
Die Voraussetzung für Interferenzerscheinungen, die Kohärenz der Wellenzüge, ist wegen der Dünne der Schicht erfüllt. Zusätzlich zur unterschiedlichen geometrischen Weglänge trägt hier noch ein anderer Effekt zum Gangunterschied bei:
Die direkt an der Grenzfläche Luft-Seifenhaut (Punkt X im zweiten Bild) reflektierte Welle erfährt einen Phasensprung um $ \pi $ bzw. $ {\tfrac {\lambda }{2}} $ während die Phase der transmittierten Welle auch nach der Reflexion an der Grenzfläche Seifenhaut-Luft (Punkt O im Schaubild) unverändert ist. Hier findet kein Phasensprung statt. Der gesamte Gangunterschied setzt sich aus den unterschiedlichen Weglängen und dem Phasensprung bei der Reflexion an der äußeren Grenzfläche zusammen.
Dies erklärt auch die Verdunkelung der Blase im unmittelbaren Moment vor dem Zerplatzen, wenn die Dicke der Seifenhaut auf einen sehr kleinen Wert gesunken ist: Dies liegt darin begründet, dass die transmittierte Welle, die zuvor den längeren Weg durch die Seifenhaut nahm, nun praktisch keine längere Distanz zurücklegt als die direkte reflektierte Welle und sich deshalb ihre Phase relativ zu dieser nicht ändert. Die reflektierte Welle hat allerdings den oben erwähnten Phasensprung erfahren was zur destruktiven Interferenz (Auslöschung) aller Wellen führt.
Hätte eine Seifenblase überall die gleiche Wandstärke, so würde der Gangunterschied nur durch den Beleuchtungswinkel definiert, und sie würde einen gleichmäßigen Farbverlauf zeigen. Da der Flüssigkeitsfilm in einer Seifenblase, die sich durch eine Luftströmung bewegt, jedoch durch Luftreibung verwirbelt wird, ist die Wandstärke nicht homogen. Unter günstigen Bedingungen kann man diese Verwirbelungen mit bloßem Auge sehen. Schwebt die Seifenblase aber relativ ruhig, treten nur wenige Verwirbelungen auf: Man kann einzelne relativ gleichmäßige Farbbänder beobachten. Die meistens vorhandenen Dickeschwankungen aufgrund der Gravitationskraft sind relativ gleichförmig und stören den gleichmäßigen Farbverlauf nicht prinzipiell.
In einem ebenen Seifenfilm sind diese Farben einfacher sichtbar zu machen. Solch ein ebener Film kann z. B. in einem rechteckigen oder kreisrunden Rahmen aus dünnen Polymer-Fasern oder dünnem Draht geformt werden. Optimale Bedingungen für die Sichtbarkeit der Interferenzfarben sind hier eine indirekte Beleuchtung (z. B. ein Blatt weißes Papier, das von einer Halogenlampe angestrahlt wird) mit 45 Grad Einfallswinkel und Beobachtung in Reflexion bei 45 Grad Ausfallswinkel. Der Hintergrund hinter dem Seifenfilm sollte dunkel sein.
An den Rändern bildet der Film einen Meniskus entweder mit dem Rahmen oder mit einem Flüssigkeits-Reservoir am unteren Ende des Films. In letzterem Fall ist eine Kombination aus Gravitation und Kapillarkraft die treibende Kraft, die eine inhomogene Filmdicke bewirkt.
Verwirbelungen und ästhetische bewegte Muster im Bereich des Meniskus und an den Rändern mit dem Rahmen kommen durch hydrodynamische Instabilitäten zustande, bei denen höchstwahrscheinlich der Marangoni-Effekt eine wichtige Rolle spielt.
Die Membran einer Seifenblase kann bei tiefen Temperaturen gefrieren, ohne zu zerplatzen. Das geschieht mit fliegenden Seifenblasen bei Temperaturen unter −10 °C im Freien oder mit anhaftenden Seifenblasen in der Gefriertruhe. Sie sind bis zu 10 Minuten stabil. Manchmal überstehen gefrorene Seifenblasen eine Landung auf hartem und kaltem Untergrund.[3]
Das Gefrieren einer auf Schnee liegenden Seifenblase erfolgt typisch durch Wachsen von fiederartigen Kristallen ab dem als Keim wirkenden anliegenden Schnee und kann etwa 2 Sekunden dauern.[4]
Seifenblasenshows verbinden Unterhaltung mit künstlerischer Leistung. Hohe Kunstfertigkeit ist dafür ebenso vonnöten wie perfekte Seifenblasenlösungen.
Beispiele üblicher Darbietungen:
Ein Seifenfilm formt eine natürliche Minimalfläche. Minimalflächen stehen schon seit dem 19. Jahrhundert im Blickpunkt mathematischer Forschung. Ein wesentlicher Beitrag dazu waren die Experimente des belgischen Physikers Joseph Plateau (vgl. Plateau-Problem).
Ein Beispiel: Schon 1884 wurde von Hermann Amandus Schwarz bewiesen, dass eine kugelförmige Seifenblase die kleinstmögliche Oberfläche eines bestimmten Luftvolumens besitzt. Jedoch erst in den letzten Jahrzehnten wurde mit Hilfe der geometrischen Maßtheorie eine angemessene Sprache für solche Probleme gefunden. Im Jahr 2000 gelang Michael Hutchings, Frank Morgan, Manuel Ritoré und Antonio Ros der Beweis, dass zwei verbundene Seifenblasen (eine sogenannte Doppelblase) zwei verschieden große Luftvolumina mit der kleinstmöglichen Oberfläche umschließen (auch Doppelblasen-Theorem; englisch Double Bubble Theorem).[5]
Lange Zeit waren Seifenblasen das einzige Mittel zur zuverlässigen Bestimmung der optimalen Neigung von nicht-trivialen Dachkonstruktionen auf Basis von Seilsystemen und Tragbögen. Dazu wurde die Konstruktion als Rahmen aus Draht geformt und dann in Seifenwasser getaucht. Beim vorsichtigen Herausziehen ergaben sich Kurvenverläufe, die als das experimentell gefundene Optimum der Form zu gelten hatten. Durch Fotografie und andere Methoden wurde das Ergebnis fixiert und auf die zugehörigen Konstruktionszeichnungen übertragen. Die jeweilige Statik für die vorgegebene Form ließ sich dann mit anderen Methoden bestimmen. Ein Beispiel dieser Methodik ist das Olympiagelände München.[6]
Eine der frühesten künstlerischen Darstellungen von Seifenblasen als Kinderspielzeug findet sich in Pieter Bruegels Gemälde Die Kinderspiele von 1560, woraus sich schließen lässt, dass Seifenblasen bereits seit mindestens 500 Jahren von Kindern zum Zwecke der Unterhaltung verwendet werden. Die Massenproduktion von Seife begann im 19. Jahrhundert, wobei der Seifenhersteller Pears zur Vermarktung insbesondere auch John Everett Millais’ Gemälde Seifenblasen („Bubbles“) nutzte, das dessen Enkel beim Spiel mit Seifenblasen zeigt.
1948 entwickelte der Chemiker Rolf Hein eine neue Formel für ein Waschmittel, das allerdings den Nachteil hatte, zu sehr zu schäumen. Er ließ die flüssige Seife in Flaschen abfüllen, fügte eine Blasring aus einer zum Ring gebogenen feinen Federdrahtwendel mit Stiel hinzu und verkaufte das Produkt unter dem Markennamen Pustefix gezielt als Kinderspielzeug. Seitdem sind zur Herstellung von Seifenblasen vorwiegend Kombinationen von mit Lauge gefüllten Plastikröhrchen und Pustering im Gebrauch.[7]