imported>Boehm K (typog) |
imported>Boehm K (typog) |
||
Zeile 1: | Zeile 1: | ||
Die '''Rauschzahl''', manchmal auch '''Rauschfaktor''' genannt, ist in der [[Nachrichtentechnik]] eine [[Kennzahl]] für das [[Rauschen (Physik)|Rauschen]] eines linearen [[Zweitor]]s. Ein Zweitor kann in diesem Zusammenhang beispielsweise eine [[Verstärker (Elektrotechnik)|Verstärkerstufe]] darstellen. Die Rauschzahl gilt nur unter den definierten Bedingungen und kann nicht direkt auf eine reale Schaltung übertragen werden. Zur Rauschzahl gehört die Angabe der Frequenz für die diese gilt und ermittelt wurde. Ein Wert von 500 [[Hertz (Einheit)|MHz]] ist üblich, da bei dieser Frequenz das [[1/f-Rauschen]] vernachlässigbar ist. | Die '''Rauschzahl''', manchmal auch '''Rauschfaktor''' genannt, ist in der [[Nachrichtentechnik]] eine [[Kennzahl]] für das [[Rauschen (Physik)|Rauschen]] eines linearen [[Zweitor]]s. Ein Zweitor kann in diesem Zusammenhang beispielsweise eine [[Verstärker (Elektrotechnik)|Verstärkerstufe]] darstellen. Die Rauschzahl gilt nur unter den definierten Bedingungen und kann nicht direkt auf eine reale Schaltung übertragen werden. Zur Rauschzahl gehört die Angabe der Frequenz, für die diese gilt und ermittelt wurde. Ein Wert von 500 [[Hertz (Einheit)|MHz]] ist üblich, da bei dieser Frequenz das [[1/f-Rauschen]] vernachlässigbar ist. | ||
== Allgemeines == | == Allgemeines == | ||
[[Datei:Rauschzahl-Zweitor.svg| | [[Datei:Rauschzahl-Zweitor.svg|mini|hochkant=1.5|Signal- (S) und Rauschleistungen (N) am Eingang und am Ausgang eines Zweitors (schraffiert)]] | ||
<!-- Das Folgende spiegelt in keiner Weise das Vorgehen bei der Messung wieder: | <!-- Das Folgende spiegelt in keiner Weise das Vorgehen bei der Messung wieder: | ||
Zur Ermittlung der Rauschzahl wird angenommen, dass in nebenstehender Skizze der Generator mit der Generatorspannung <math>U_G</math> den Eingang des Zweitors über eine ideale [[Impedanz]] <math>Z_G</math> speist und zusätzlich zum Nutzsignal <math>S_1</math> [[Wärmerauschen|thermisch rauscht]]. Dies ist durch die schraffiert eingezeichnete [[Rauschspannung]]s<nowiki/>quelle <math>U_R</math> dargestellt, welche die [[Bandbreite|bandbegrenzte]] Rauschspannung | Zur Ermittlung der Rauschzahl wird angenommen, dass in nebenstehender Skizze der Generator mit der Generatorspannung <math>U_G</math> den Eingang des Zweitors über eine ideale [[Impedanz]] <math>Z_G</math> speist und zusätzlich zum Nutzsignal <math>S_1</math> [[Wärmerauschen|thermisch rauscht]]. Dies ist durch die schraffiert eingezeichnete [[Rauschspannung]]s<nowiki/>quelle <math>U_R</math> dargestellt, welche die [[Bandbreite|bandbegrenzte]] Rauschspannung | ||
Zeile 20: | Zeile 20: | ||
:<math>\mathrm{SNR}_\mathrm{aus} = \frac{S_2}{N_2}</math> | :<math>\mathrm{SNR}_\mathrm{aus} = \frac{S_2}{N_2}</math> | ||
gleich dem SNR des Eingangs <math>S_1 / N_1</math>. | gleich dem SNR des Eingangs <math>S_1 / N_1</math>. | ||
Bei realen Zweitoren, wie beispielsweise einem elektronischen Verstärker mit dem [[Verstärkungsfaktor]] ''G'', weist der Verstärker intern mit dem Generator nicht [[Korrelation|korrelierte]] [[Rauschquelle]]n auf, wodurch das Signal-Rausch-Verhältnis am Ausgang immer geringer als das Signal-Rausch-Verhältnis am Eingang ist: | Bei realen Zweitoren, wie beispielsweise einem elektronischen Verstärker mit dem [[Verstärkungsfaktor]] ''G'', weist der Verstärker intern mit dem Generator nicht [[Korrelation|korrelierte]] [[Rauschquelle]]n auf, wodurch das Signal-Rausch-Verhältnis am Ausgang immer geringer als das Signal-Rausch-Verhältnis am Eingang ist: | ||
Zeile 37: | Zeile 37: | ||
Häufig wird die Rauschzahl [[logarithmisch]] in [[Bel (Einheit)|Dezibel]] (dB) als '''Rauschmaß''' angegeben: | Häufig wird die Rauschzahl [[logarithmisch]] in [[Bel (Einheit)|Dezibel]] (dB) als '''Rauschmaß''' angegeben: | ||
:<math>F_{\mathrm{dB}} = 10 \cdot \ | :<math>F_{\mathrm{dB}} = 10 \cdot \log \frac{\mathrm{SNR}_\mathrm{ein}}{\mathrm{SNR}_\mathrm{aus}}</math> | ||
Da die Größen im Allgemeinen von der [[Frequenz]] abhängen, wird für die praktische Bestimmung der Rauschzahl im Rahmen der [[Rauschmessung]] eine hinreichend kleine [[Bandbreite]] gewählt, innerhalb der alle Größen über die Frequenz näherungsweise konstant sind. Damit wird die Rauschzahl zu einer Funktion der Frequenz, die dann auch als '''spektrale Rauschzahl''' F(f) bezeichnet wird. | Da die Größen im Allgemeinen von der [[Frequenz]] abhängen, wird für die praktische Bestimmung der Rauschzahl im Rahmen der [[Rauschmessung]] eine hinreichend kleine [[Bandbreite]] gewählt, innerhalb der alle Größen über die Frequenz näherungsweise konstant sind. Damit wird die Rauschzahl zu einer Funktion der Frequenz, die dann auch als '''spektrale Rauschzahl''' F(f) bezeichnet wird. | ||
Zeile 63: | Zeile 63: | ||
==== Kaskade ==== | ==== Kaskade ==== | ||
Werden mehrere Zweitore als eine [[Kaskade]] [[Reihenschaltung|in Reihe geschaltet]] | Werden mehrere Zweitore als eine [[Kaskadierung|Kaskade]] [[Reihenschaltung|in Reihe geschaltet]] – dies ist beispielsweise bei einer Aneinanderreihung von Verstärkern entlang einer längeren Leitung der Fall – lässt sich die Rauschzahl ''F''<sub>g</sub> einer Kaskade mit ''n'' Zweitoren verallgemeinern zu: | ||
:<math> | :<math>F_{g} = 1 + (F_1 - 1) + \frac{F_2-1}{G_1} + \frac{F_3-1}{G_1\cdot G_2} + \frac{F_4-1}{G_1\cdot G_2\cdot G_3} + \cdots + \frac{F_n - 1}{G_1 G_2 G_3 \cdots G_{n-1}} = 1 + \sum_{k=1}^{n} \frac{(F_k-1)}{\prod_{i=0}^{k-1} G_i} \quad \text{mit } G_0=1</math> | ||
Diese erweiterte Form der Rauschzahl wird auch als [[Friis-Formel]] bezeichnet. | Diese erweiterte Form der Rauschzahl wird auch als [[Friis-Formel]] bezeichnet. | ||
Zeile 86: | Zeile 86: | ||
Obwohl das Eingangssignal als ideal angenommen wird, ist seine Leistung infolge der Quantennatur der [[Photon]]en nicht völlig konstant, sondern variiert infolge des [[Schrotrauschen]]s. | Obwohl das Eingangssignal als ideal angenommen wird, ist seine Leistung infolge der Quantennatur der [[Photon]]en nicht völlig konstant, sondern variiert infolge des [[Schrotrauschen]]s. | ||
Zu dem bereits im Eingangssignal enthaltenen und im optischen Verstärker verstärkten Rauschen kommen weitere Rauschanteile hinzu, die im Verstärker entstehen. Meist dominiert dabei das Mischprodukt aus Signal und [[Superlumineszenz | Zu dem bereits im Eingangssignal enthaltenen und im optischen Verstärker verstärkten Rauschen kommen weitere Rauschanteile hinzu, die im Verstärker entstehen. Meist dominiert dabei das Mischprodukt aus Signal und [[Superlumineszenz]] (ASE: ''Amplified spontaneous emission''). Vernachlässigt man die weiteren Rauschanteile, so erhält man für den optischen Verstärker ([[Optischer Verstärker #Erbium-dotierte Faserverstärker (EDFA)|EDFA]]) die Rauschzahl | ||
:<math>F = \frac{\mathrm{n}_\mathrm{ASE}}{G\cdot h\cdot f} + \frac{1}{G} </math> | :<math>F = \frac{\mathrm{n}_\mathrm{ASE}}{G\cdot h\cdot f} + \frac{1}{G} </math> | ||
Zeile 92: | Zeile 92: | ||
mit | mit | ||
* <math>\mathrm{n}_\mathrm{ASE}</math> [[Leistungsdichte]] des ASE-Rauschens in W/Hz | * <math>\mathrm{n}_\mathrm{ASE}</math> [[Leistungsdichte]] des ASE-Rauschens in W/Hz | ||
* G Verstärkungsfaktor | * <math>G</math> Verstärkungsfaktor | ||
* h [[Plancksches Wirkungsquantum]] | * <math>h</math> [[Plancksches Wirkungsquantum]] | ||
* f Frequenz des optischen Eingangssignals in [[Hertz (Einheit)|Hz]] | * <math>f</math> Frequenz des optischen Eingangssignals in [[Hertz (Einheit)|Hz]] | ||
Für [[Raman-Verstärker]] gilt eine andere Formel, da entlang der [[Glasfaser|Faser]] gleichzeitig Verstärkung und Dämpfung stattfindet. | Für [[Raman-Verstärker]] gilt eine andere Formel, da entlang der [[Glasfaser|Faser]] gleichzeitig Verstärkung und Dämpfung stattfindet. | ||
Zeile 102: | Zeile 102: | ||
== Literatur == | == Literatur == | ||
*{{Literatur | * {{Literatur | ||
|Autor = Rudolf Müller | |Autor = Rudolf Müller | ||
|Titel = Rauschen | |Titel = Rauschen | ||
|Verlag = Springer Verlag |Auflage = 2. | Band = 15 | Jahr = 1989 |ISBN = 3-540-51145-8 }} | |Verlag = Springer Verlag |Auflage = 2. | Band = 15 | Jahr = 1989 |ISBN = 3-540-51145-8 }} | ||
*{{Literatur | * {{Literatur | ||
|Autor = [[Curt Rint]] | |Autor = [[Curt Rint]] | ||
|Titel = Handbuch für Hochfrequenz- und Elektro- Techniker. | |Titel = Handbuch für Hochfrequenz- und Elektro-Techniker. | ||
| Auflage = 12. | Verlag = Hüthig und Pflaum Verlag GmbH | Jahr = 1979 | ISBN = 3-8101-0044-7 }} | | Auflage = 12. | Verlag = Hüthig und Pflaum Verlag GmbH | Jahr = 1979 | ISBN = 3-8101-0044-7 }} | ||
*{{Literatur | * {{Literatur | ||
|Autor = Jürgen Detlefsen, Uwe Siart | |Autor = Jürgen Detlefsen, Uwe Siart | ||
|Titel = Grundlagen der Hochfrequenztechnik | |Titel = Grundlagen der Hochfrequenztechnik | ||
|Auflage = 2. | Verlag = Oldenbourg Verlag | Ort = München Wien | Jahr = 2006 |ISBN = 3-486-57866-9 }} | |Auflage = 2. | Verlag = Oldenbourg Verlag | Ort = München Wien | Jahr = 2006 |ISBN = 3-486-57866-9 }} | ||
*{{Literatur | * {{Literatur | ||
|Autor = Anders Bjarklev | |Autor = Anders Bjarklev | ||
|Titel = Optical Fiber Amplifiers: Design and System Applications | |Titel = Optical Fiber Amplifiers: Design and System Applications |
Die Rauschzahl, manchmal auch Rauschfaktor genannt, ist in der Nachrichtentechnik eine Kennzahl für das Rauschen eines linearen Zweitors. Ein Zweitor kann in diesem Zusammenhang beispielsweise eine Verstärkerstufe darstellen. Die Rauschzahl gilt nur unter den definierten Bedingungen und kann nicht direkt auf eine reale Schaltung übertragen werden. Zur Rauschzahl gehört die Angabe der Frequenz, für die diese gilt und ermittelt wurde. Ein Wert von 500 MHz ist üblich, da bei dieser Frequenz das 1/f-Rauschen vernachlässigbar ist.
Der dem Eingangswiderstand des Zweitors angepasste rauschende Widerstand befindet sich auf einer Rauschtemperatur $ T_{0} $ von 290 K. Dieser Temperaturwert, der ungefähr der Raumtemperatur entspricht, ist willkürlich gewählt und bezeichnet die Standard-Rauschzahl[1].
Am Eingang wird dem Zweitor eine Signalleistung $ S_{1} $ und eine Rauschleistung $ N_{1} $ zugeführt, deren Verhältnis das Signal-Rausch-Verhältnis (SNR) des Einganges darstellt:
An seinem Ausgang gibt das Zweitor dann eine Signalleistung $ S_{2} $ und eine Rauschleistung $ N_{2} $ an die Impedanz $ Z_{L} $ ab. Bei einem ideal angenommenen, rauschfreien Zweitor ist das SNR des Ausgangs
gleich dem SNR des Eingangs $ S_{1}/N_{1} $.
Bei realen Zweitoren, wie beispielsweise einem elektronischen Verstärker mit dem Verstärkungsfaktor G, weist der Verstärker intern mit dem Generator nicht korrelierte Rauschquellen auf, wodurch das Signal-Rausch-Verhältnis am Ausgang immer geringer als das Signal-Rausch-Verhältnis am Eingang ist:
Die Herausforderung eines Verstärkers besteht in diesem Zusammenhang darin, dem Signal möglichst wenig Eigenrauschen hinzuzufügen, so dass das Nutzsignal S am Ausgang trotz Verschlechterung des Signal-Rausch-Verhältnisses über dem Rauschpegel der nachfolgenden Verarbeitungsstufen liegt.
Die Rauschzahl F ist gegeben durch das Verhältnis:
mit dem Verstärkungsfaktor G des Verstärkers, für den normalerweise gilt $ G>1. $ Liegt jedoch eine Dämpfung vor, wie beispielsweise bei einem Kabel, so ist $ G<1. $
Häufig wird die Rauschzahl logarithmisch in Dezibel (dB) als Rauschmaß angegeben:
Da die Größen im Allgemeinen von der Frequenz abhängen, wird für die praktische Bestimmung der Rauschzahl im Rahmen der Rauschmessung eine hinreichend kleine Bandbreite gewählt, innerhalb der alle Größen über die Frequenz näherungsweise konstant sind. Damit wird die Rauschzahl zu einer Funktion der Frequenz, die dann auch als spektrale Rauschzahl F(f) bezeichnet wird.
Weiter ist es möglich, die Rauschzahl über die im linearen Zweitor zusätzlich erzeugte Rauschleistung $ N_{v} $ zu beschreiben. Die ausgangsseitige Rauschleistung $ N_{2} $ setzt sich zusammen aus der um $ G $ verstärkten eingangsseitig zugeführten Rauschleistung $ N_{1} $ und der im Zweitor erzeugten Rauschleistung $ N_{v} $:
Damit kann die Rauschzahl des linearen Zweitors dargestellt werden:
mit der durch das Zweitor zusätzlich eingebrachten Rauschzahl $ F_{v} $:
Bei idealen, rauschfreien Zweitoren ist
Demzufolge beträgt die Rauschzahl für das ideale, rauschfreie lineare Zweitor (frequenzunabhängig):
Werden mehrere Zweitore als eine Kaskade in Reihe geschaltet – dies ist beispielsweise bei einer Aneinanderreihung von Verstärkern entlang einer längeren Leitung der Fall – lässt sich die Rauschzahl Fg einer Kaskade mit n Zweitoren verallgemeinern zu:
Diese erweiterte Form der Rauschzahl wird auch als Friis-Formel bezeichnet.
Die Rauschzahl eines Zweitors lässt sich auch mit Hilfe der Rauschtemperatur Te ausdrücken:
Dabei ist T0 die Bezugstemperatur, die für die Standard-Rauschzahl mit 290 K festgelegt ist.
Ein idealer, rauschfreier Verstärker weist eine Rauschtemperatur von Te=0 K auf, was einer Rauschzahl von 1 entspricht. Ein realer Verstärker, der sich beispielsweise auf einer Rauschtemperatur von Te=290 K befindet, weist eine Rauschzahl von 2 auf, was bedeutet, dass sich das SNR am Ausgang des Verstärkers um 3 dB verschlechtert. Insbesondere für Eingangsverstärker und zur Erzielung eines hohen SNR ist es daher nötig, die Rauschtemperatur des Verstärkers möglichst niedrig zu halten.
Nichtlineare Zweitore können die Spektren von Nutzleistung und Rauschleistung am Zweitoreingang so verändern, dass durch Filtermaßnahmen in günstigen Fällen Rauschzahlen kleiner als 1 entstehen können. Ein typisches Beispiel ist ein Demodulator für frequenzmodulierte Nutzsignale, der für Signal-Rausch-Verhältnisse am Eingang oberhalb eines Schwellenwerts ein verbessertes Signal-Rausch-Verhältnis am Demodulatorausgang produziert.
Die Rauschzahl beschreibt hier die Abnahme des Signal- zu Rauschverhältnisses eines kohärenten optischen Signals beim Durchgang durch einen optischen Verstärker. Dazu werden die Signal- zu Rauschverhältnisse des elektrischen Stroms betrachtet, den ein idealer Photodetektor mit der Quanteneffizienz 1 vor oder hinter dem optischen Verstärker liefern würde. Die in die S/N-Verhältnisse eingehenden elektrischen Leistungen sind also proportional zum Quadrat der entsprechenden optischen Leistungen.
Obwohl das Eingangssignal als ideal angenommen wird, ist seine Leistung infolge der Quantennatur der Photonen nicht völlig konstant, sondern variiert infolge des Schrotrauschens.
Zu dem bereits im Eingangssignal enthaltenen und im optischen Verstärker verstärkten Rauschen kommen weitere Rauschanteile hinzu, die im Verstärker entstehen. Meist dominiert dabei das Mischprodukt aus Signal und Superlumineszenz (ASE: Amplified spontaneous emission). Vernachlässigt man die weiteren Rauschanteile, so erhält man für den optischen Verstärker (EDFA) die Rauschzahl
mit
Für Raman-Verstärker gilt eine andere Formel, da entlang der Faser gleichzeitig Verstärkung und Dämpfung stattfindet.