Übersättigung: Unterschied zwischen den Versionen

Übersättigung: Unterschied zwischen den Versionen

imported>Jü
 
imported>FF-11
K (Revert: Leider nicht so, siehe Text: In einer übersättigten Lösung wurde mehr gelöst als eigentlich möglich wäre. Übersättigung heißt nicht, dass ungelöste Rest im Glas sind.)
 
Zeile 1: Zeile 1:
[[Datei:Verzadigingsgraad oplossingen.png|mini|300px|Sättigung und Kristallisation:<br />A. Ungesättigte Lösung<br />B. Übersättigte Lösung<br />C. Gesättigte Lösung mit Bodenkörper (Niederschlag)]]
[[Datei:Verzadigingsgraad oplossingen.png|mini|300px|Sättigung und Kristallisation:<br />A. Ungesättigte Lösung<br />B. Übersättigte Lösung<br />C. Gesättigte Lösung mit Bodenkörper (Niederschlag)]]
'''Übersättigung''' ist die Bezeichnung für einen metastabilen [[Zustand (Thermodynamik)|Zustand]] einer [[Lösung (Chemie)|Lösung]] oder von [[Dampf]]. Unter gewöhnlichen Bedingungen würde eine solche Überschreitung des Gleichgewichtszustands durch eine [[Phasenumwandlung]] verhindert. Bei übersättigten Systemen tritt diese jedoch nicht am erwarteten Gleichgewichtspunkt des [[Phasendiagramm]]s auf. Der Temperaturbereich, in dem eine Übersättigung auftreten kann, wird auch [[Ostwald-Miers-Bereich]] (nach [[Wilhelm Ostwald]] und [[Henry Alexander Miers]]<ref>{{Literatur |Autor=[[Leonard James Spencer|L. J. Spencer]] |Titel=Biographical notice of Sir Henry A. Miers (1858–1942) |Sammelwerk=Journal of the [[Mineralogical Society of Great Britain and Ireland|Mineralogical Society]] |Nummer=185 |Datum=1944 |Seiten=17–28 |Online=[http://www.minersoc.org/pages/Archive-MM/Volume_27/27-185-17.pdf PDF]}}</ref>) genannt.
'''Übersättigung''' ist die Bezeichnung für einen [[metastabil]]en [[Zustand (Thermodynamik)|Zustand]] einer [[Lösung (Chemie)|Lösung]] oder von [[Dampf]]. Unter gewöhnlichen Bedingungen würde eine solche Überschreitung des Gleichgewichtszustands durch eine [[Phasenumwandlung]] verhindert. Bei übersättigten Systemen tritt diese jedoch nicht am erwarteten Gleichgewichtspunkt des [[Phasendiagramm]]s auf. Der Temperaturbereich, in dem eine Übersättigung auftreten kann, wird auch [[Ostwald-Miers-Bereich]] (nach [[Wilhelm Ostwald]] und [[Henry Alexander Miers]]<ref>{{Literatur |Autor=[[Leonard James Spencer|L. J. Spencer]] |Titel=Biographical notice of Sir Henry A. Miers (1858–1942) |Sammelwerk=Journal of the [[Mineralogical Society of Great Britain and Ireland|Mineralogical Society]] |Nummer=185 |Datum=1944 |Seiten=17–28 |Online=[http://www.minersoc.org/pages/Archive-MM/Volume_27/27-185-17.pdf PDF]}}</ref>) genannt.


== Übersättigte Lösung ==
== Übersättigte Lösung ==
Eine übersättigte Lösung enthält mehr von dem gelösten Stoff, als seiner Löslichkeit bei der betreffenden Temperatur entspricht.
Eine übersättigte Lösung enthält mehr von dem gelösten Stoff, als seiner Löslichkeit bei der betreffenden Temperatur entspricht.


=== Herstellung einer übersättigten Lösung ===
=== Herstellung ===
Beim langsamen Abkühlen einer gesättigten Lösung bei ruhigem Stehen bildet sich zunächst eine übersättigte Lösung, ''bevor'' der Überschuss des gelösten Stoffes ausfällt.<ref name="Wittenberger">Walter Wittenberger: ''Chemische Laboratoriumstechnik.'' 7. Auflage. Springer-Verlag, Wien/ New York 1973, ISBN 3-211-81116-8, S.&nbsp;100.</ref>
Beim langsamen Abkühlen einer gesättigten Lösung bei ruhigem Stehen bildet sich zunächst eine übersättigte Lösung, ''bevor'' der Überschuss des gelösten Stoffes ausfällt.<ref name="Wittenberger">Walter Wittenberger: ''Chemische Laboratoriumstechnik.'' 7. Auflage. Springer-Verlag, Wien/ New York 1973, ISBN 3-211-81116-8, S.&nbsp;100.</ref>


=== Ausscheidung der „zu viel“ gelösten Substanz ===
=== Ausscheidung der „zu viel“ gelösten Substanz ===
Die Ausscheidung des „zu viel“ in Lösung geblieben Stoffes erfolgt durch
Die Ausscheidung des „zu viel“ in Lösung gebliebenen Stoffes erfolgt durch
* Schütteln,
* Schütteln,
* Rühren,
* Rühren,
* Verdunsten des Lösungsmittels,
* Verdunsten des Lösungsmittels,
* Reiben mit einem Glasstab an der Innenwand des Glasgefäßes in dem die Lösung aufbewahrt wird oder durch
* Reiben mit einem Glasstab an der Innenwand des Glasgefäßes, in dem die Lösung aufbewahrt wird, oder durch
* Zugabe eines Kristalls des Stoffes, der in der Flüssigkeit gelöst ist – „Impfen“. An den scharfen Kanten der Impfkristalle beginnt dann die Auskristallisation.<ref name="Wittenberger" />
* Zugabe eines Kristalls des Stoffes, der in der Flüssigkeit gelöst ist – „Impfen“. An den scharfen Kanten der Impfkristalle beginnt dann die Auskristallisation.<ref name="Wittenberger" />
* Einbringen von Energie (beispielsweise durch Erschütterungen oder bei [[Wärmekissen]] durch Verformungsenergie)


=== Anwendungsbeispiele ===
=== Anwendungsbeispiele ===
Zeile 22: Zeile 23:
Übersättigter Dampf hat eine höhere Dichte als Dampf im thermodynamischen Gleichgewicht zwischen Dampf und Kondensat. Vor allem in Bezug auf [[Wasserdampf]] in der [[Luft]] zeigt sich beim Fehlen von [[Kondensationskern]]en ([[Aerosol]]en) im Laborversuch ([[Nebelkammer]]) eine Übersättigung von maximal ca.&nbsp;800 %. Unter [[Erdatmosphäre|atmosphärischen]] Bedingungen lassen sich maximale Übersättigungen von 100 % beobachten, wobei in der Regel nur Übersättigungen von wenigen Prozentpunkten auftreten.
Übersättigter Dampf hat eine höhere Dichte als Dampf im thermodynamischen Gleichgewicht zwischen Dampf und Kondensat. Vor allem in Bezug auf [[Wasserdampf]] in der [[Luft]] zeigt sich beim Fehlen von [[Kondensationskern]]en ([[Aerosol]]en) im Laborversuch ([[Nebelkammer]]) eine Übersättigung von maximal ca.&nbsp;800 %. Unter [[Erdatmosphäre|atmosphärischen]] Bedingungen lassen sich maximale Übersättigungen von 100 % beobachten, wobei in der Regel nur Übersättigungen von wenigen Prozentpunkten auftreten.


=== Herstellung von übersättigtem Dampf ===
=== Herstellung ===
Beim langsamen Abkühlen von Dampf im thermodynamischen Gleichgewicht zwischen Dampf und Kondensat entsteht übersättigter Dampf.<ref name="Römpp">Otto-Albrecht Neumüller (Hrsg.): ''Römpps Chemie Lexikon.'' 8. Auflage. Frank’sche Verlagshandlung, Stuttgart 1983, ISBN 3-440-04513-7, S.&nbsp;4404.</ref>
Beim langsamen Abkühlen von Dampf im thermodynamischen Gleichgewicht zwischen Dampf und Kondensat entsteht übersättigter Dampf.<ref name="Römpp">[[Otto-Albrecht Neumüller]] (Hrsg.): [[Römpp Lexikon Chemie|''Römpps Chemie-Lexikon.'']] Band 6: ''T–Z.'' 8. neubearbeitete und erweiterte Auflage. Franckh'sche Verlagshandlung, Stuttgart 1988, ISBN 3-440-04516-1, S.&nbsp;4404.</ref>


=== Zerlegung von übersättigtem Dampf am Beispiel von Wolken ===
=== Zerlegung am Beispiel von Wolken ===
Aus unterkühlten Wolkenfeldern lässt sich Regen durch „Impfen“ mit Keimen von z. B.
Aus unterkühlten Wolkenfeldern lässt sich Regen durch „Impfen“ mit Keimen von z. B.
* [[Harnstoff]],
* [[Harnstoff]],

Aktuelle Version vom 10. Juni 2021, 17:43 Uhr

Sättigung und Kristallisation:
A. Ungesättigte Lösung
B. Übersättigte Lösung
C. Gesättigte Lösung mit Bodenkörper (Niederschlag)

Übersättigung ist die Bezeichnung für einen metastabilen Zustand einer Lösung oder von Dampf. Unter gewöhnlichen Bedingungen würde eine solche Überschreitung des Gleichgewichtszustands durch eine Phasenumwandlung verhindert. Bei übersättigten Systemen tritt diese jedoch nicht am erwarteten Gleichgewichtspunkt des Phasendiagramms auf. Der Temperaturbereich, in dem eine Übersättigung auftreten kann, wird auch Ostwald-Miers-Bereich (nach Wilhelm Ostwald und Henry Alexander Miers[1]) genannt.

Übersättigte Lösung

Eine übersättigte Lösung enthält mehr von dem gelösten Stoff, als seiner Löslichkeit bei der betreffenden Temperatur entspricht.

Herstellung

Beim langsamen Abkühlen einer gesättigten Lösung bei ruhigem Stehen bildet sich zunächst eine übersättigte Lösung, bevor der Überschuss des gelösten Stoffes ausfällt.[2]

Ausscheidung der „zu viel“ gelösten Substanz

Die Ausscheidung des „zu viel“ in Lösung gebliebenen Stoffes erfolgt durch

  • Schütteln,
  • Rühren,
  • Verdunsten des Lösungsmittels,
  • Reiben mit einem Glasstab an der Innenwand des Glasgefäßes, in dem die Lösung aufbewahrt wird, oder durch
  • Zugabe eines Kristalls des Stoffes, der in der Flüssigkeit gelöst ist – „Impfen“. An den scharfen Kanten der Impfkristalle beginnt dann die Auskristallisation.[2]
  • Einbringen von Energie (beispielsweise durch Erschütterungen oder bei Wärmekissen durch Verformungsenergie)

Anwendungsbeispiele

Übersättigte Lösungen werden zum Beispiel zur Reinigung von Stoffen durch Umkristallisation oder überhaupt erst zur Gewinnung von Kristallen (auch Einkristallen:[3]) mittels Kristallisation verwendet.

Übersättigter Dampf

Übersättigter Dampf hat eine höhere Dichte als Dampf im thermodynamischen Gleichgewicht zwischen Dampf und Kondensat. Vor allem in Bezug auf Wasserdampf in der Luft zeigt sich beim Fehlen von Kondensationskernen (Aerosolen) im Laborversuch (Nebelkammer) eine Übersättigung von maximal ca. 800 %. Unter atmosphärischen Bedingungen lassen sich maximale Übersättigungen von 100 % beobachten, wobei in der Regel nur Übersättigungen von wenigen Prozentpunkten auftreten.

Herstellung

Beim langsamen Abkühlen von Dampf im thermodynamischen Gleichgewicht zwischen Dampf und Kondensat entsteht übersättigter Dampf.[4]

Zerlegung am Beispiel von Wolken

Aus unterkühlten Wolkenfeldern lässt sich Regen durch „Impfen“ mit Keimen von z. B.

  • Harnstoff,
  • Natriumalginat,
  • Silberiodid oder
  • Trockeneis

zur Ausscheidung bringen. Dies kann ggf. erwünscht sein, um Hagelschlag vorzubeugen.[4]

Unterkühlung von Reinstoffschmelzen

Eine weit verbreitete Anwendung, bei der ein breiter Ostwald-Miers-Bereich ausgenutzt wird, sind Handwärmer bzw. Wärmekissen mit Natriumacetat-Trihydrat Füllung.[5] Es wird bei einer Schmelztemperatur von 58 °C verflüssigt, z. B. in der Mikrowelle. Das Material bleibt auch noch bei Temperaturen weit unterhalb des Schmelzpunktes – unter Umständen bis −20 °C – als unterkühlte Schmelze in einem metastabilen Zustand flüssig, da das Salz sich in seinem Kristallwasser löst; die Wassermoleküle bilden eine Art eigenes Kristallgitter, das sich zuerst auflöst.

Zerlegung und Wärmegewinnung

Wird ein Metallplättchen (ähnlich dem in einem Knackfrosch) im Wärmekissen gedrückt, löst das die Kristallisation aus. Das Kissen erwärmt sich dabei wieder auf die Schmelztemperatur, wobei die vollständige Kristallisation und damit die Freigabe der latenten Wärme sich über eine längere Zeit erstrecken kann. Als Auslöser für die Kristallisation kommen in Frage:

  • die Druckwelle, die durch das Drücken des Metallplättchens ausgelöst wird,
  • die dabei verursachte Freisetzung mikroskopisch kleiner Kristallisationskeime, die sich bei jeder Kristallisation in kleinen Ritzen des Metalls festsetzen.[6]

Einzelnachweise

  1. L. J. Spencer: Biographical notice of Sir Henry A. Miers (1858–1942). In: Journal of the Mineralogical Society. Nr. 185, 1944, S. 17–28 (PDF).
  2. 2,0 2,1 Walter Wittenberger: Chemische Laboratoriumstechnik. 7. Auflage. Springer-Verlag, Wien/ New York 1973, ISBN 3-211-81116-8, S. 100.
  3. Arthur Lüttringhaus: Krystallisieren, in Houben-Weyl (Herausgeber: Eugen Müller): Methoden der Organischen Chemie. Band I/1: Allgemeine Laboratoriumspraxis., 4. Auflage. Georg Thieme Verlag, Stuttgart 1958, S. 354–355.
  4. 4,0 4,1 Otto-Albrecht Neumüller (Hrsg.): Römpps Chemie-Lexikon. Band 6: T–Z. 8. neubearbeitete und erweiterte Auflage. Franckh'sche Verlagshandlung, Stuttgart 1988, ISBN 3-440-04516-1, S. 4404.
  5. Seminarvortrag Daniel Oriwol „Natriumacetat als Latentwärmespeicher“, 2008; PDF-Dokument.
  6. Mansel A. Rogerson, Silvana S. S. Cardoso: Solidification in heat packs: I. Nucleation rate. In: AIChE Journal. 49, 2003, S. 505–515. doi:10.1002/aic.690490220.