Leitungsband: Unterschied zwischen den Versionen

Leitungsband: Unterschied zwischen den Versionen

imported>Aka
K (Tippfehler entfernt)
 
imported>Cepheiden
(Quelle)
 
Zeile 1: Zeile 1:
Der Begriff '''Leitungsband''' gehört zum [[Bändermodell]], mit dem die [[elektrische Leitfähigkeit]] von Materialien erklärt wird. Er bezeichnet das [[Bandstruktur|Energieband]], das am [[absoluter Nullpunkt|absoluten Temperatur-Nullpunkt]] (''T'' = 0 [[Kelvin]]) über dem höchsten mit [[Elektron]]en besetzten Energieband ([[Valenzband]]) liegt. Dabei kann es sich teilweise mit dem Valenzband überlagern (wie z.B. bei Natrium) und so teilweise besetzt sein (Metalle und [[Halbmetalle]]) bzw. vom Valenzband durch die [[Bandlücke]] getrennt und daher unbesetzt sein ([[Halbleiter]] und [[Isolator]]en).
[[Datei:Energy band model (DE).svg|mini|hochkant=1.5|Lage des Leitungsbandes (orange) bei verschiedenen Materialtypen;<br />VB=Valenzband, E<sub>F</sub>=[[Fermi-Energie]]]]
Der Begriff '''Leitungsband''' gehört zum [[Bändermodell]], mit dem die [[elektrische Leitfähigkeit]] von Materialien erklärt wird. Er bezeichnet das [[Bandstruktur|Energieband]], das am [[Absoluter Nullpunkt|absoluten Temperatur-Nullpunkt]] (''T'' = 0&nbsp;[[Kelvin|K]]) über dem höchsten mit [[Elektron]]en besetzten Energieband ([[Valenzband]]) liegt.<ref name="Demtröder_2010_469"/>


[[Datei:Energy_band_model_(DE).svg|mini|hochkant=1.5|Lage des Leitungsbandes bei verschiedenen Materialtypen; VB=Valenzband, E<sub>F</sub>=[[Fermienergie]]]]
Dabei kann es<ref name="Demtröder_2010_469"/>
* sich teilweise mit dem Valenzband überlagern (z.&nbsp;B. bei [[Natrium]]) und so teilweise besetzt sein (Metalle und [[Halbmetalle]])
* vom Valenzband durch die [[Bandlücke]] getrennt und daher unbesetzt sein ([[Halbleiter]] und [[Nichtleiter|Isolatoren]]).


== Bedeutung beim Ladungstransport ==  
== Bedeutung beim Ladungstransport ==
Befinden sich [[Elektron]]en eines Materials im Leitungsband, so können sie aufgrund freier Energiezustände im Leitungsband leicht Energie aus einem elektrischen Feld aufnehmen. Sie bewegen sich gemäß dem [[Bloch-Theorem]], vergleichbar freien Teilchen, als [[Quasiteilchen]]. Das Material ist daher elektrisch leitfähig.
Befinden sich Elektronen eines Materials im Leitungsband, so können sie aufgrund freier Energiezustände im Leitungsband leicht Energie aus einem [[Elektrisches Feld|elektrischen Feld]] aufnehmen. Sie bewegen sich gemäß dem [[Bloch-Theorem]], vergleichbar [[Freies Teilchen|freien Teilchen]], als [[Quasiteilchen]]. Das Material ist daher elektrisch leitfähig.


Bei Halbleitern und Isolatoren ist das Leitungsband durch die [[Bandlücke]] vom [[Valenzband]] getrennt. Elektronen können diese nur durch äußere Energiezufuhr – [[thermisch]]e, [[kinetische Energie|kinetische]] oder [[Photon|photonische]] Anregung (siehe auch: [[photoelektrischer Effekt]]) – überwinden.
Bei Halbleitern und Isolatoren ist das Leitungsband durch die Bandlücke vom Valenzband getrennt. Elektronen können diese nur durch äußere Energiezufuhr überwinden durch [[Thermische Energie|thermische]], [[Kinetische Energie|kinetische]] oder [[Lichtenergie|photonische]] Anregung (siehe auch: [[photoelektrischer Effekt]]).


Die theoretische Berechnung aller Bänder kristalliner Festkörper erfolgt [[Quantenmechanik|quantenmechanisch]] unter Anwendung des [[Bloch-Theorem]]s, um die Elektronenzustände im periodischen Potenzial (dem der Atome im Festkörper) zu erhalten.
Die theoretische Berechnung aller Bänder kristalliner Festkörper erfolgt [[Quantenmechanik|quantenmechanisch]] unter Anwendung des Bloch-Theorems, um die Elektronenzustände im periodischen Potenzial (dem der Atome im Festkörper) zu erhalten.
 
== Einzelnachweise ==
<references>
<ref name="Demtröder_2010_469">{{Literatur |Autor=Wolfgang Demtröder |Titel=Experimentalphysik. 3: Atome, Moleküle und Festkörper|Auflage=4., überarbeitete |Verlag=Springer Spektrum |Ort=Berlin Heidelberg |Datum=2010 |ISBN=978-3-642-03911-9 |Seiten=469}}</ref>
</references>


[[Kategorie:Festkörperphysik]]
[[Kategorie:Festkörperphysik]]

Aktuelle Version vom 18. Juli 2020, 20:25 Uhr

Lage des Leitungsbandes (orange) bei verschiedenen Materialtypen;
VB=Valenzband, EF=Fermi-Energie

Der Begriff Leitungsband gehört zum Bändermodell, mit dem die elektrische Leitfähigkeit von Materialien erklärt wird. Er bezeichnet das Energieband, das am absoluten Temperatur-Nullpunkt (T = 0 K) über dem höchsten mit Elektronen besetzten Energieband (Valenzband) liegt.[1]

Dabei kann es[1]

  • sich teilweise mit dem Valenzband überlagern (z. B. bei Natrium) und so teilweise besetzt sein (Metalle und Halbmetalle)
  • vom Valenzband durch die Bandlücke getrennt und daher unbesetzt sein (Halbleiter und Isolatoren).

Bedeutung beim Ladungstransport

Befinden sich Elektronen eines Materials im Leitungsband, so können sie aufgrund freier Energiezustände im Leitungsband leicht Energie aus einem elektrischen Feld aufnehmen. Sie bewegen sich gemäß dem Bloch-Theorem, vergleichbar freien Teilchen, als Quasiteilchen. Das Material ist daher elektrisch leitfähig.

Bei Halbleitern und Isolatoren ist das Leitungsband durch die Bandlücke vom Valenzband getrennt. Elektronen können diese nur durch äußere Energiezufuhr überwinden – durch thermische, kinetische oder photonische Anregung (siehe auch: photoelektrischer Effekt).

Die theoretische Berechnung aller Bänder kristalliner Festkörper erfolgt quantenmechanisch unter Anwendung des Bloch-Theorems, um die Elektronenzustände im periodischen Potenzial (dem der Atome im Festkörper) zu erhalten.

Einzelnachweise

  1. 1,0 1,1 Wolfgang Demtröder: Experimentalphysik. 3: Atome, Moleküle und Festkörper. 4., überarbeitete Auflage. Springer Spektrum, Berlin Heidelberg 2010, ISBN 978-3-642-03911-9, S. 469.