Oberton: Unterschied zwischen den Versionen

Oberton: Unterschied zwischen den Versionen

imported>Arcomelo
(→‎Literatur: Ergänzung)
 
imported>Siphonarius
K (Änderungen von 83.215.92.182 (Diskussion) auf die letzte Version von AK-LeChiffre zurückgesetzt)
 
Zeile 1: Zeile 1:
{{Dieser Artikel|behandelt den musikalisch-akustischen Begriff. Für den physikalischen Hintergrund siehe [[Harmonische]].}}
{{Dieser Artikel|behandelt den musikalisch-akustischen Begriff. Für den physikalischen Hintergrund siehe [[Harmonische]].}}
'''Obertöne''' (auch '''Partial-, Teil-, Aliquot-, Neben-''' oder '''Beitöne''')<ref>[http://www.zeno.org/Meyers-1905/A/Aliqu%C5%8Dtt%C3%B6ne Eintrag in Meyers Großem Konversations-Lexikon von 1905.]</ref> sind die neben dem Grundton mitklingenden Bestandteile eines [[musik]]alisch [[Musikinstrument|instrumental]] oder [[Gesang|vokal]] erzeugten [[Ton (Musik)|Tones]].


'''Obertöne''' (auch '''Partial'''- oder '''Teiltöne''', seltener '''Aliquottöne''', '''Nebentöne''' oder '''Beitöne''')<ref>[http://www.zeno.org/Meyers-1905/A/Aliqu%C5%8Dtt%C3%B6ne Eintrag in Meyers Großem Konversations-Lexikon von 1905]</ref> sind mitklingende Bestandteile nahezu jedes [[Musikinstrument|instrumental]] oder [[Gesang|vokal]] erzeugten [[musik]]alischen [[Ton (Musik)|Tons]]. Ein solcher ist nämlich fast immer im [[Akustik|akustischen]] Sinne gar kein ''Ton'' ([[Sinuston]] <ref group="n" name="Sinus"/>), sondern ein [[Klang]] oder [[Tongemisch]], also ein Schallereignis, das sich vorrangig aus mehreren sinusförmigen ''Teiltönen'' zusammensetzt. Der tiefste Teilton wird ''[[Grundton]]'' genannt und bestimmt in den meisten Fällen die wahrgenommene [[Tonhöhe]], während die übrigen Teiltöne, die ''Obertöne'', die [[Klangfarbe]] beeinflussen.<ref group="n" name="verh"/>
Ein solcher ist jedoch im [[Akustik|akustischen]] Sinne kein einzelner ''Ton'' ([[Sinuston]]),<ref group="n" name="Sinus" /> sondern ein [[Klang]] oder [[Tongemisch]], also ein [[Schallereignis]], das sich vorrangig aus mehreren sinusförmigen ''Teiltönen'' von unterschiedlicher [[Amplitude]] zusammensetzt. Der tiefste Teilton wird ''[[Grundfrequenz|Grundton]]'' genannt und bestimmt in der Regel die wahrgenommene [[Tonhöhe]]. Die höheren Teiltöne, die ''Obertöne,'' erzeugen die [[Klangfarbe]].<ref group="n" name="verh" />


Bei vielen Musikinstrumenten, insbesondere bei [[Aerophon]]en wie der [[Querflöte]] und [[Chordophon]]en wie der [[Violine]] sind die [[Frequenz]]en der Obertöne annähernd ganzzahlige Vielfache der Grundfrequenz. Das bedeutet, dass einem Grundton mit der Frequenz 440&nbsp;[[Hertz (Einheit)|Hz]] Obertöne mit Frequenzen von zirka 880&nbsp;Hz oder zirka 4400&nbsp;Hz beigemischt sein können, nicht aber von zum Beispiel 550&nbsp;Hz. Derartige Teiltöne, deren Frequenzen ganzzahlige Vielfache der Grundfrequenz sind, bezeichnet man auch als [[Harmonische]].
Bei fast allen natürlichen [[Musikinstrument]]en (mit Ausnahme der [[Idiophon|Schlaginstrumente]]) sind die [[Frequenz]]en der Obertöne normalerweise ganzzahlige Vielfache der Grundfrequenz. Das bedeutet, dass einem Grundton mit der angenommenen Frequenz von 100&nbsp;[[Hertz (Einheit)|Hz]] Obertöne mit Frequenzen von 200&nbsp;Hz, 300&nbsp;Hz, 400&nbsp;Hz, 500&nbsp;Hz, 600&nbsp;Hz … beigefügt sind. Derartige Teiltöne bezeichnet man auch als [[Harmonische]].


Bei anderen Schallquellen (z.&nbsp;B. bei Röhren, Stäben, Platten oder [[Schlagton|Glocken]]) treten auch Schwingungen auf, deren Frequenzen keine ganzzahligen Verhältnisse zur wahrgenommen Grundfrequenz haben, wodurch das Erkennen einer bestimmten Tonhöhe erschwert sein kann bzw. der Ton als unsauber oder im Extremfall als misstönend empfunden wird. Solche Teiltöne bezeichnet man auch als '''Unharmonische'''.
Als '''Unharmonische''' bezeichnet man solche Teiltöne, die aus dieser mathematischen Folge herausfallen, (z.&nbsp;B. bei Röhren, Stäben, Platten oder [[Schlagton|Glocken]]). Sie entstehen durch Schwingungen, deren Frequenzen keine ganzzahligen Verhältnisse zur wahrgenommenen Grundfrequenz haben. Dadurch wird das Erkennen einer bestimmten Tonhöhe erschwert oder der Ton als unsauber oder misstönend empfunden.


Während ''Teiltöne'' Bestandteile eines Gesamtklangs sind, der durch Anregung aller bzw. mehrerer der möglichen [[Eigenschwingung]]en eines schwingungsfähigen Körpers entsteht, werden bei den begrifflich verwandten [[Naturtonreihe|Naturtönen]] von [[Blasinstrument]]en durch so genanntes [[Überblasen]] einzelne Oberschwingungen angeregt, die dann als klingende Töne wahrgenommen werden. Der eigentliche Grundton wird so unterdrückt. Ähnliches gilt für die [[Flageolettton|Flageoletttöne]] bei [[Saiteninstrument]]en.
Obertöne sind als Teiltöne Bestandteile eines Gesamtklanges, der durch [[Eigenschwingung]]en eines schwingungsfähigen Mediums entsteht. Bei den begrifflich verwandten [[Naturtonreihe|Naturtönen]] von [[Blasinstrument]]en werden durch sogenanntes [[Überblasen]] einzelne Oberschwingungen so stark angeregt, dass sie direkt als klingende Töne wahrgenommen werden, die ihrerseits weitere Obertöne erzeugen. Gleiches gilt für die [[Flageolettton|Flageoletttöne]] bei [[Saiteninstrument]]en.


Je nach Schallquelle ist die Zusammensetzung des [[Klangspektrum]]s eine ganz spezifische, so dass neben [[Rauschen (Physik)|Rauschanteilen]] und Faktoren im zeitlichen Verlauf des Signals vor allem der Obertongehalt für die charakteristische [[Klangfarbe]] von Musikinstrumenten sowie von Menschen- und Tierstimmen verantwortlich ist. Stimm- und instrumententypische Frequenzbereiche, in denen die Obertöne durch Resonanz besonders verstärkt werden und daher vorrangig für die Klangfarbe ausschlaggebend sind, heißen [[Formant]]en.
Je nach Schallquelle ist das [[Klangspektrum]] ganz spezifisch zusammengesetzt. Daher ist für die charakteristische [[Klangfarbe]] von Musikinstrumenten sowie von Menschen- und Tierstimmen neben [[Rauschen (Physik)|Rauschanteilen]] und Faktoren im zeitlichen Verlauf des Signals vor allem der Obertongehalt verantwortlich. Stimm- und instrumententypische Frequenzbereiche, in denen die Obertöne durch Resonanz besonders verstärkt werden und daher vorrangig für die Klangfarbe ausschlaggebend sind, heißen [[Formant]]en.


== Harmonische ==
== Harmonische ==
{{Hauptartikel|Harmonische}}
{{Hauptartikel|Harmonische}}
Als ''Harmonische'' bezeichnet man die Teiltöne eines harmonischen Klangs, also dessen Grundton und die Obertöne, deren Schwingungszahlen ganzzahlige Vielfache der Frequenz des Grundtons sind. In der folgenden Abbildung stellt die große Sinuswelle links den Grundton dar; im Bild rechts daneben überlagern harmonische Obertöne in Form schmalerer Sinuswellen die große Welle.
Als ''Harmonische'' bezeichnet man die Teiltöne eines harmonischen Klangs, also dessen Grundton und die Obertöne, deren Schwingungszahlen ganzzahlige Vielfache der Frequenz des Grundtons sind. In der folgenden Abbildung stellt die große Sinuswelle links den Grundton dar; im Bild rechts daneben überlagern harmonische Obertöne in Form schmalerer Sinuswellen die große Welle.
{| class="wikitable  
 
|[[Datei:A1Schwingung.png|reine Sinusschwingung]]
{| class="wikitable
<br>{{Audio|a1sinus.ogg|Anhören}}
|[[Datei:A1Schwingung.png|Reine Sinusschwingung]]
<br />[[Datei:a1sinus.ogg]]
|[[Datei:Mitobertoenen.gif|Schwingung mit Obertönen]]
|[[Datei:Mitobertoenen.gif|Schwingung mit Obertönen]]
<br>{{Audio|A1obertonreich.ogg|Anhören}}
<br />[[Datei:A1obertonreich.ogg]]
&nbsp;&nbsp;&nbsp;{{Audio|A1vierteroberton.ogg|Anhören: den 4. Oberton cis<sup>4</sup> allein}}
Der 4. Oberton cis<sup>4</sup> allein[[Datei:A1vierteroberton.ogg]]
|}
|}


[[Datei:Harmonics.ogg|miniatur|Der Grundton ''A<sub>1</sub>'' (55&nbsp;[[Hertz (Einheit)|Hz]]) und die darauf aufbauende Obertonreihe bis einschließlich ''a<sup>3</sup>'' (1.760&nbsp;Hz)]]
[[Datei:Harmonics.ogg|miniatur|Der Grundton ''A<sub>1</sub>'' (55&nbsp;[[Hertz (Einheit)|Hz]]) und ab der 4. Sekunde die darauf aufbauende Obertonreihe bis einschließlich ''a<sup>3</sup>'' (1.760&nbsp;Hz)]]
=== Hörbeispiel: Aufbau eines harmonischen Klangs aus Sinustönen ===
=== Hörbeispiel: Aufbau eines harmonischen Klangs aus Sinustönen ===
Im nebenstehenden Hörbeispiel wird ein harmonischer Klang sukzessive aus seinen elektronisch erzeugten sinusförmigen Teiltönen aufgebaut.
Im nebenstehenden Hörbeispiel wird ein harmonischer Klang sukzessive aus seinen elektronisch erzeugten sinusförmigen Teiltönen aufgebaut
Die subjektiv wahrgenommene Lautstärkezunahme des 4. Oberton, bei objektiv gleichen Dezibel, ist auf die [[Hörschwelle]] zurückzuführen.


Harmonische Schwingungen stehen immer in Beziehung zur [[Grundfrequenz]]. Wie genau diese Beziehung beschrieben wird, hängt vom gewählten mathematischen Modell ab. Die Wahl der Grundfrequenz ist objektiv schwierig und wird in Bezug auf Musik in erster Linie vom empfundenen oder notierten Grundton bestimmt. Bei der Analyse oder Synthese von Schallereignissen kann aus akustischer oder messtechnischer Sicht die Grundfrequenz auch anders gewählt werden. Grundton und Obertöne müssen daher immer im Kontext verstanden werden.
Harmonische Schwingungen stehen immer in Beziehung zur [[Grundfrequenz]]. Wie genau diese Beziehung beschrieben wird, hängt vom gewählten mathematischen Modell ab. Die Wahl der Grundfrequenz ist objektiv schwierig und wird in Bezug auf Musik in erster Linie vom empfundenen oder notierten Grundton bestimmt. Bei der Analyse oder Synthese von Schallereignissen kann aus akustischer oder messtechnischer Sicht die Grundfrequenz auch anders gewählt werden. Grundton und Obertöne müssen daher immer im Kontext verstanden werden.
Zeile 31: Zeile 34:


=== Erläuterungsbeispiel: Kammerton a<sup>1</sup> und die ersten fünf Harmonischen ===
=== Erläuterungsbeispiel: Kammerton a<sup>1</sup> und die ersten fünf Harmonischen ===
Diese Tabelle zeigt den [[Kammerton|Kammerton a<sup>1</sup>]] als Grundton und seine ersten vier Obertöne mit ihrer jeweiligen Ordnung ''n'' und ihren Frequenzen. Die ''n''. Harmonische hat allgemein die Frequenz ''n·f''.
Diese Tabelle zeigt den [[Kammerton]] a<sup>1</sup> als Grundton und seine ersten vier Obertöne mit ihrer jeweiligen Ordnung ''n'' und ihren Frequenzen. Die ''n.'' Harmonische hat allgemein die Frequenz ''n·f.''


{| class="wikitable" style="text-align:center;"
{| class="wikitable" style="text-align:center;"
Zeile 45: Zeile 48:
| ''n'' = 1 || ''n'' = 2 || ''n'' = 3 || ''n'' = 4 || ''n'' = 5
| ''n'' = 1 || ''n'' = 2 || ''n'' = 3 || ''n'' = 4 || ''n'' = 5
|-
|-
!
!
| Grundfrequenz || 1. Oberton || 2. Oberton || 3. Oberton || 4. Oberton
| Grundfrequenz || 1. Oberton || 2. Oberton || 3. Oberton || 4. Oberton
|-
|-
!
!
| 1. Teilton || 2. Teilton || 3. Teilton || 4. Teilton || 5. Teilton
| 1. Teilton || 2. Teilton || 3. Teilton || 4. Teilton || 5. Teilton
|-
|-
!  
!
| 1. Harmonische || 2. Harmonische || 3. Harmonische || 4. Harmonische || 5. Harmonische
| 1. Harmonische || 2. Harmonische || 3. Harmonische || 4. Harmonische || 5. Harmonische<ref group="n" name="verh" />
|}
|}


Der Grundton ist die 1. Harmonische, eine Oktave darüber ist die 2. Harmonische, was der 1. Oberton ist.<ref group="n" name="verh"/>
Man sieht hier: Das Intervall [a<sup>2</sup> e<sup>3</sup>] ist eine Quinte mit dem Frequenzverhältnis <sup>3·''f''</sup>/<sub>2·''f''</sub>&nbsp;=&nbsp;<sup>3</sup>/<sub>2</sub> und das Intervall [a<sup>3</sup> cis<sup>4</sup>] ist eine große Terz mit dem Frequenzverhältnis <sup>5·''f''</sup>/<sub>4·''f''</sub>&nbsp;=&nbsp;<sup>5</sup>/<sub>4</sub>.


== {{Anker|Obertonreihe}}Das einfache harmonische Modell – Obertonreihe ==
== {{Anker|Obertonreihe}}Das einfache harmonische Modell – Obertonreihe ==
Zeile 62: Zeile 65:
Bereits seit der [[Antike]] gewinnt man Erkenntnisse zu Obertönen am Beispiel schwingender Saiten. Dabei wird angenommen, dass eine auf die Hälfte verkürzte Saite einen Ton mit der doppelten Schwingungszahl liefert, eine auf ein Drittel reduzierte Saite die dreifache Schwingungszahl ergibt usw. Für die musikalische Praxis, etwa das [[Überblasen]] von Blasinstrumenten, das Spielen von [[Flageolettton|Flageoletttönen]] auf Saiteninstrumenten, den [[Obertongesang]] oder die [[Aliquotregister|Orgelregistrierung]], ist dieses einfache Modell in der Regel ausreichend. Bei der Anwendung auf andere Klangquellen, wie z.&nbsp;B. stark gespannte Klaviersaiten, stößt dieses Modell jedoch an seine Grenzen.
Bereits seit der [[Antike]] gewinnt man Erkenntnisse zu Obertönen am Beispiel schwingender Saiten. Dabei wird angenommen, dass eine auf die Hälfte verkürzte Saite einen Ton mit der doppelten Schwingungszahl liefert, eine auf ein Drittel reduzierte Saite die dreifache Schwingungszahl ergibt usw. Für die musikalische Praxis, etwa das [[Überblasen]] von Blasinstrumenten, das Spielen von [[Flageolettton|Flageoletttönen]] auf Saiteninstrumenten, den [[Obertongesang]] oder die [[Aliquotregister|Orgelregistrierung]], ist dieses einfache Modell in der Regel ausreichend. Bei der Anwendung auf andere Klangquellen, wie z.&nbsp;B. stark gespannte Klaviersaiten, stößt dieses Modell jedoch an seine Grenzen.


Die nebenstehende Abbildung stellt (in willkürlicher Beschränkung auf die ersten sieben) die Eigenschwingungen einer Saite dar. Unter bestimmten Bedingungen kann die Saite jede dieser Eigenschwingungen separat ([[Flageolettton|Flageoletttöne]]) ausführen, in der Regel werden jedoch alle oder zumindest mehrere dieser Eigenschwingungen gleichzeitig angeregt, so dass die resultierende Schwingung aus einer komplexen Überlagerung dieser Teilschwingungen besteht.
Die nebenstehende Abbildung stellt (in willkürlicher Beschränkung auf die ersten sieben) die Eigenschwingungen einer Saite dar. Unter bestimmten Bedingungen kann die Saite jede dieser Eigenschwingungen separat ([[Flageolettton|Flageoletttöne]]) ausführen, in der Regel werden jedoch alle oder zumindest mehrere dieser Eigenschwingungen gleichzeitig angeregt, sodass die resultierende Schwingung aus einer komplexen Überlagerung dieser Teilschwingungen besteht.


Das menschliche [[Ohr|Gehör]] nimmt [[Periode (Physik)|periodische]] [[Schwingung]]en als [[Ton (Musik)|Töne]] (im Sinne von musikalischen Tönen) wahr, wobei die Schwingungsperiode die wahrgenommene [[Tonhöhe]] bestimmt. Analysiert man das [[Frequenzspektrum#Amplitudenspektrum eines Audiosignals|Amplitudenspektrum eines Audiosignals]] von annähernd periodischer Schwingungen z.&nbsp;B. mit Hilfe der [[Kurzzeit-Fourier-Transformation]], so besteht dieses aus
Das menschliche [[Ohr|Gehör]] nimmt [[Periode (Physik)|periodische]] [[Schwingung]]en als [[Ton (Musik)|Töne]] (im Sinne von musikalischen Tönen) wahr, wobei die Schwingungsperiode die wahrgenommene [[Tonhöhe]] bestimmt. Analysiert man das [[Frequenzspektrum#Amplitudenspektrum eines Audiosignals|Amplitudenspektrum eines Audiosignals]] einer annähernd periodischen Schwingung z.&nbsp;B. mit Hilfe der [[Kurzzeit-Fourier-Transformation]], so besteht dieses aus
* einem Grundton, der der Schwingungsperiode entspricht,
* einem Grundton, der der Schwingungsperiode entspricht
* und [[Frequenz]]en, die ''[[Ganze Zahl|ganzzahligen]] [[Multiplikation|Vielfachen]]'' der Grundfrequenz entsprechen, den ''harmonischen Obertönen''.
* und den ''harmonischen Obertönen'' mit [[Frequenz]]en, die ''[[Ganze Zahl|ganzzahlige]] [[Multiplikation|Vielfache]]'' der Grundfrequenz sind.


Listet man die Teiltöne im Sinne zunehmender Frequenz auf, so erhält man die Teil- bzw. Obertonreihe:
Listet man die Teiltöne im Sinne zunehmender Frequenz auf, so erhält man die Teil- bzw. Obertonreihe:


=== Die Obertonreihe {{Anker|Obertonreihe}} ===
=== Die Obertonreihe {{Anker|Obertonreihe}} ===
Im Folgenden sind beispielhaft die ersten sechzehn auf den Grundton C bezogenen Teiltöne dargestellt. Diese Beschränkung ist aus Gründen der Überschaubarkeit willkürlich gewählt. Theoretisch setzt sich die Teiltonreihe nach oben mit stetig kleiner werdenden Abständen bis ins Unendliche fort.
Im Folgenden sind beispielhaft die ersten sechzehn auf den Grundton C bezogenen Teiltöne dargestellt. Diese Beschränkung ist aus Gründen der Überschaubarkeit willkürlich gewählt. Theoretisch setzt sich die Teiltonreihe nach oben mit immer kleiner werdenden Abständen bis ins Unendliche fort.


==== als Notenbeispiel ====
==== Als Notenbeispiel ====
Bei notenmäßiger Darstellung der Teiltöne ist zu berücksichtigen, dass wegen der nach oben kontinuierlich abnehmenden Tonabstände eine exakte Wiedergabe in Notenschrift (zumindest im höheren Bereich der Teiltonreihe) nur annähernd (und schließlich gar nicht mehr) möglich ist. Auch stimmen nicht alle Obertöne mit den Tonstufen der gängigen [[Stimmung (Musik)|Stimmungssysteme]] überein. Im folgenden Notenbeispiel werden die Obertöne mit den Tönen der [[Gleichstufige Stimmung|gleichstufigen Stimmung]] verglichen. Die Abweichungen nach oben oder unten sind jeweils in [[Cent (Musik)|Cent]] angegeben.
Bei notenmäßiger Darstellung der Teiltöne ist zu berücksichtigen, dass wegen der nach oben kontinuierlich abnehmenden Tonabstände eine exakte Wiedergabe in Notenschrift (zumindest im höheren Bereich der Teiltonreihe) nur annähernd (und schließlich gar nicht mehr) möglich ist. Auch stimmen nicht alle Obertöne mit den Tonstufen der gängigen [[Stimmung (Musik)|Stimmungssysteme]] überein. Im folgenden Notenbeispiel werden die Obertöne mit den Tönen der [[Gleichstufige Stimmung|gleichstufigen Stimmung]] verglichen. Die Abweichungen nach oben oder unten sind jeweils in [[Cent (Musik)|Cent]] angegeben.


[[Datei:Obertonreihe.jpg|800px]]
[[Datei:Obertonreihe.jpg|800px]]


Während bei der gleichstufigen Stimmung außer dem Grundton und dessen Oktaven kein Ton exakt mit der Teiltonreihe übereinstimmt, sind die Abweichungen bei [[Reine Stimmung|reiner Stimmung]] deutlich seltener.
Während bei der gleichstufigen Stimmung außer dem Grundton und dessen Oktaven kein Ton exakt mit der Teiltonreihe übereinstimmt, gibt es keine Abweichungen bei [[Reine Stimmung|reiner Stimmung]] bei allen Teiltönen außer Nr. 7 ([[Naturseptime]]), Nr. 11 ([[Alphorn-Fa]]), Nr. 13, Nr. 14 (Oktave der Naturseptime) und Nr. 15.
 
==== als Tabelle ====


==== Als Tabelle ====
Die in der Tabelle verwendeten Farben orientieren sich an der [[Synästhesie#Synästhesie und Musik|Musik-Farben-Synästhesie]].
Die in der Tabelle verwendeten Farben orientieren sich an der [[Synästhesie#Synästhesie und Musik|Musik-Farben-Synästhesie]].


Zeile 87: Zeile 89:
|+ Einfaches Modell – Vergleich mit Grundton
|+ Einfaches Modell – Vergleich mit Grundton
|- style="background-color:#dddddd;border: 1pt"
|- style="background-color:#dddddd;border: 1pt"
! style="text-align:left;font-weight:bold;width:15em;" | Grundton – Oberton Nr:  
! style="text-align:left;font-weight:bold;width:15em;" | Grundton – Oberton Nr:
| style="background-color:#FF0001;width:4em;"|Grundton||style="background-color:#FF0000;width:4em;"| 1 ||style="background-color:#ff6501;width:4em;"| 2 ||style="background-color:#FF0000;width:4em;"| 3 ||style="background-color:#e3fbff;width:5em;"| 4 ||style="background-color:#ff6501;width:5em;"| 5 ||style="background-color:#8c8a8c;width:5em;"| 6 ||style="background-color:#FF0000;width:4em;"| 7 ||style="background-color:#FFFF00;width:5em;"| 8 ||style="background-color:#e3fbff;width:5em;"| 9 ||style="background-color:#ac1c02;width:5em;"| 10 ||style="background-color:#ff6501;width:5em;"| 11 ||style="background-color:#ff00ff;width:4.5em;"| 12 ||style="background-color:#8c8a8c;width:5em;"| 13 ||style="background-color:#0000fe;width:5em;"| 14 ||style="background-color:#FF0000;width:5em;"| 15
| style="background-color:#FF0001;width:4em;"|Grundton||style="background-color:#FF0000;width:4em;"| 1 ||style="background-color:#ff6501;width:4em;"| 2 ||style="background-color:#FF0000;width:4em;"| 3 ||style="background-color:#e3fbff;width:5em;"| 4 ||style="background-color:#ff6501;width:5em;"| 5 ||style="background-color:#8c8a8c;width:5em;"| 6 ||style="background-color:#FF0000;width:4em;"| 7 ||style="background-color:#FFFF00;width:5em;"| 8 ||style="background-color:#e3fbff;width:5em;"| {{0}}9 ||style="background-color:#ac1c02;width:5em;"| 10 ||style="background-color:#ff6501;width:5em;"| 11 ||style="background-color:#ff00ff;width:4.5em;"| 12 ||style="background-color:#8c8a8c;width:5em;"| 13 ||style="background-color:#0000fe;width:5em;"| 14 ||style="background-color:#FF0000;width:5em;"| 15
|-style="background-color:#EEE9E9;"
|-style="background-color:#EEE9E9;"
! style="text-align:left;font-weight:bold;width:15em;" | Teilton Nr:  
! style="text-align:left;font-weight:bold;width:15em;" | Teilton Nr:
| style="background-color:#FF0001;width:4em;"| 1 ||style="background-color:#FF0000;width:4em;"| 2 ||style="background-color:#ff6501;width:4em;"| 3 ||style="background-color:#FF0000;width:4em;"| 4 ||style="background-color:#e3fbff;width:5em;"| 5 ||style="background-color:#ff6501;width:5em;"| 6 ||style="background-color:#8c8a8c;width:5em;"| 7 ||style="background-color:#FF0000;width:4em;"| 8 ||style="background-color:#FFFF00;width:5em;"| 9 ||style="background-color:#e3fbff;width:5em;"| 10 ||style="background-color:#ac1c02;width:5em;"| 11 ||style="background-color:#ff6501;width:5em;"| 12 ||style="background-color:#ff00ff;width:4.5em;"| 13 ||style="background-color:#8c8a8c;width:5em;"| 14 ||style="background-color:#0000fe;width:5em;"| 15 ||style="background-color:#FF0000;width:5em;"| 16
| style="background-color:#FF0001;width:4em;"| 1 ||style="background-color:#FF0000;width:4em;"| 2 ||style="background-color:#ff6501;width:4em;"| 3 ||style="background-color:#FF0000;width:4em;"| 4 ||style="background-color:#e3fbff;width:5em;"| 5 ||style="background-color:#ff6501;width:5em;"| 6 ||style="background-color:#8c8a8c;width:5em;"| 7 ||style="background-color:#FF0000;width:4em;"| 8 ||style="background-color:#FFFF00;width:5em;"| 9 ||style="background-color:#e3fbff;width:5em;"| 10 ||style="background-color:#ac1c02;width:5em;"| 11 ||style="background-color:#ff6501;width:5em;"| 12 ||style="background-color:#ff00ff;width:4.5em;"| 13 ||style="background-color:#8c8a8c;width:5em;"| 14 ||style="background-color:#0000fe;width:5em;"| 15 ||style="background-color:#FF0000;width:5em;"| 16
|-style="background-color:#EEE9E9;"
|-style="background-color:#EEE9E9;"
! style="background-color:#ececec;text-align:left;font-weight:normal;" | Vielfaches der Grundfrequenz:
! style="background-color:#ececec;text-align:left;font-weight:normal;" | Vielfaches der Grundfrequenz:
|einfache||doppelte||dreifache||vierfache||fünffache||sechsf.||siebenf.||achtf.||neunf.||zehnfache||elffache||zwölffache||dreizehnf.||vierzehnf.|| fünzehnf.||sechzehnf.
|einfache||doppelte||dreifache||vierfache||fünffache||sechsf.||siebenf.||achtf.||neunf.||zehnfache||elffache||zwölffache||dreizehnf.||vierzehnf.|| fünfzehnf.||sechzehnf.
|-style="border: 1pt"
|-style="border: 1pt"
! style="background-color:#ececec;text-align:left;font-weight:normal;" | Beispiel ''f'' in&nbsp;Hz:
! style="background-color:#ececec;text-align:left;font-weight:normal;" | Beispiel ''f'' in&nbsp;Hz:
| 66<ref group="T" name="Grundfrequenz" /> || 132 || 198 || 264 || 330 || 396 || 462 || 528 || 594 || 660 || 726 || 792 || 858 || 924 || 990 || style="border-right:1pt"| 1056  
| 66<ref group="T" name="Grundfrequenz" /> || 132 || 198 || 264 || 330 || 396 || 462 || 528 || 594 || 660 || 726 || 792 || 858 || 924 || 990 || style="border-right:1pt"| 1056
|- style="background-color:#dddddd;"
|- style="background-color:#dddddd;"
! style="text-align:left;font-weight:normal;" |Note:
! style="text-align:left;font-weight:normal;" |Note:
|[[Datei:Bass_C_2.svg|40px]]
|[[Datei:Bass C 2.svg|40px]]
|[[Datei:Bass_c-2.svg|40px]]
|[[Datei:Bass c-2.svg|40px]]
|[[Datei:Bass_g-2.svg|40px]]
|[[Datei:Bass g-2.svg|40px]]
|[[Datei:Violin_c1-2.svg|40px]]
|[[Datei:Violin c1-2.svg|40px]]
|[[Datei:Violin_e1-2.svg|40px]]
|[[Datei:Violin e1-2.svg|40px]]
|[[Datei:Violin_g1-2.svg|40px]]
|[[Datei:Violin g1-2.svg|40px]]
|[[Datei:Violin_b1-2.svg|40px]]
|[[Datei:Violin b1-2.svg|40px]]
|[[Datei:Violin_c2-2.svg|40px]]
|[[Datei:Violin c2-2.svg|40px]]
|[[Datei:Violin_d2-2.svg|40px]]
|[[Datei:Violin d2-2.svg|40px]]
|[[Datei:Violin_e2-2.svg|40px]]
|[[Datei:Violin e2-2.svg|40px]]
|[[Datei:Violin_Fa-2.svg|40px]]
|[[Datei:Violin Fa-2.svg|40px]]
|[[Datei:Violin_g2-2.svg|40px]]
|[[Datei:Violin g2-2.svg|40px]]
|[[Datei:Violin_as2-2.svg|40px]]
|[[Datei:Violin as2-2.svg|40px]]
|[[Datei:Violin_b2-2.svg|40px]]
|[[Datei:Violin b2-2.svg|40px]]
|[[Datei:Violin_h2-2.svg|40px]]
|[[Datei:Violin h2-2.svg|40px]]
|[[Datei:Violin_c3-2.svg|40px]]  
|[[Datei:Violin c3-2.svg|40px]]
|-style="background-color:#EED5B7;border:1pt"
|-style="background-color:#EED5B7;border:1pt"
! style="background-color:#ececec;text-align:left;font-weight:normal;" | Tonname:
! style="background-color:#ececec;text-align:left;font-weight:normal;" | Tonname:
| C || c || g || c<sup>1</sup> || e<sup>1</sup> || g<sup>1</sup> || ≈&nbsp;b<sup>1</sup><ref group="T" name="Naturseptime" /> || c<sup>2</sup> || d<sup>2</sup> || e<sup>2</sup> || ≈&nbsp;f<sup>1</sup><ref group="T" name="Alphorn-Fa" /> || g<sup>2</sup> || ≈&nbsp;as<sup>2</sup><ref group="T" name="as" /> || ≈&nbsp;b<sup>2</sup><ref group="T" name="Naturseptime2" />|| h<sup>2</sup> || style="border-right:1pt"| c<sup>3</sup>
| C || c || g || c<sup>1</sup> || e<sup>1</sup> || g<sup>1</sup> || ≈&nbsp;b<sup>1</sup><ref group="T" name="Naturseptime" /> || c<sup>2</sup> || d<sup>2</sup> || e<sup>2</sup> || ≈&nbsp;f<sup>2</sup><ref group="T" name="Alphorn-Fa" /> || g<sup>2</sup> || ≈&nbsp;as<sup>2</sup><ref group="T" name="as" /> || ≈&nbsp;b<sup>2</sup><ref group="T" name="Naturseptime2" />|| h<sup>2</sup> || style="border-right:1pt"| c<sup>3</sup>
|-style="border:1pt"
|-style="border:1pt"
! style="background-color:#ececec;text-align:left;font-weight:normal;" | Verhältnis zum Ton darunter:
! style="background-color:#ececec;text-align:left;font-weight:normal;" | Verhältnis zum Ton darunter:
| 1:1 || 2:1 || 3:2 || 4:3 || 5:4 || 6:5 || 7:6 || 8:7 || 9:8 || 10:9 || 11:10 || 12:11 || 13:12 || 14:13 || 15:14 || style="border-right:1pt"| 16:15  
| 1:1 || 2:1 || 3:2 || 4:3 || 5:4 || 6:5 || 7:6 || 8:7 || 9:8 || 10:9 || 11:10 || 12:11 || 13:12 || 14:13 || 15:14 || style="border-right:1pt"| 16:15
|-style="background-color:#EED5B7;border:1pt"
|-style="background-color:#EED5B7;border:1pt"
! style="background-color:#ececec;text-align:left;font-weight:normal;" | [[Intervall (Musik)|Intervall]] zum Ton darunter:
! style="background-color:#ececec;text-align:left;font-weight:normal;" | [[Intervall (Musik)|Intervall]] zum Ton darunter:
| [[Prime]] || [[Oktave]]<ref group="T" name="Oktve" /> || reine [[Quinte]] || reine [[Quarte]] || große [[Terz (Musik)|Terz]] || kleine Terz || – || – || großer [[Ganzton]] || kleiner Ganzton || – || – || – || – || – || style="border-right:1pt"| diatonischer [[Halbton]]
| [[Prime]] || [[Oktave]]<ref group="T" name="Oktve" /> || reine [[Quinte]] || reine [[Quarte]] || große [[Terz (Musik)|Terz]] || kleine Terz || – || – || großer [[Ganzton]] || kleiner Ganzton || – || – || – || – || – || style="border-right:1pt"| diatonischer [[Halbton]]
|}
|}


'''Tabellenfußnoten'''
'''Tabellenfußnoten'''
<references group="T">
<references group="T">
<ref name="Grundfrequenz">Eine kleine Terz (Frequenzverhältnis <sup>6</sup>/<sub>5</sub>) über dem Kammerton a' mit 440&nbsp;Hz liegt der Ton c<sup>2</sup> mit 528&nbsp;Hz. Das drei Oktaven tiefer liegende C hat demnach die Frequenz von 66&nbsp;Hz.</ref>
<ref name="Grundfrequenz">Eine kleine Terz (Frequenzverhältnis {{Bruch|6|5}}) über dem Kammerton a′ mit 440&nbsp;Hz liegt der Ton c<sup>2</sup> mit 528&nbsp;Hz. Das drei Oktaven tiefer liegende C hat demnach die Frequenz von 66&nbsp;Hz.</ref>
<ref name="Naturseptime">7. Oberton = 462 Hz ([[Naturseptime]]). Abweichung von b<sup>1</sup> = 475,2 Hz der reinen Stimmung ≈&nbsp;49 Cent. Hinweis: Vor allem für die Darstellung der feinen Größenunterschiede der Intervalle verwendet man die Einheit [[Cent (Musik)|Cent]], wobei ein gleichstufiger Halbton 100 Cent und eine Oktave 1200 Cent entsprechen. Die Berechnung erfolgt über den Logarithmus des Frequenzverhältnisses zur Basis 2. Hier 1200&nbsp;log<sub>2</sub>&nbsp;(475,2/462) ≈&nbsp;49 Cent.</ref>
<ref name="Naturseptime">7. Oberton = 462&nbsp;Hz ([[Naturseptime]]). Abweichung von b<sup>1</sup> = 475,2&nbsp;Hz der reinen Stimmung ≈&nbsp;49 Cent. Hinweis: Vor allem für die Darstellung der feinen Größenunterschiede der Intervalle verwendet man die Einheit [[Cent (Musik)|Cent]], wobei ein gleichstufiger Halbton 100 Cent und eine Oktave 1200 Cent entsprechen. Die Berechnung erfolgt über den Logarithmus des Frequenzverhältnisses zur Basis 2. Hier 1200&nbsp;log<sub>2</sub>&nbsp;(475,2/462) ≈&nbsp;49 Cent.</ref>
<ref name="Alphorn-Fa">11. Oberton = 726 Hz ([[Alphorn-Fa]]). Abweichung von f<sup>2</sup> = 704 Hz bzw. fis<sup>2</sup> = 742,5 Hz der reinen Stimmung ≈&nbsp;53 Cent bzw. 39 Cent.</ref>
<ref name="Alphorn-Fa">11. Oberton = 726&nbsp;Hz ([[Alphorn-Fa]]). Abweichung von f<sup>2</sup> = 704&nbsp;Hz bzw. fis<sup>2</sup> = 742,5&nbsp;Hz der reinen Stimmung ≈&nbsp;53 Cent bzw. 39 Cent.</ref>
<ref name="as">13. Oberton = 858 Hz. Abweichung von as<sup>2</sup> =&nbsp;844,8 Hz der reinen Stimmung ≈&nbsp;27 Cent.</ref>
<ref name="as">13. Oberton = 858&nbsp;Hz. Abweichung von as<sup>2</sup> =&nbsp;844,8&nbsp;Hz der reinen Stimmung ≈&nbsp;27 Cent.</ref>
<ref name="Naturseptime2">14. Oberton = 924 Hz ([[Naturseptime]]). Abweichung von b<sup>2</sup> = 950,4 Hz der reinen Stimmung ≈&nbsp;49 Cent.</ref>
<ref name="Naturseptime2">14. Oberton = 924&nbsp;Hz ([[Naturseptime]]). Abweichung von b<sup>2</sup> = 950,4&nbsp;Hz der reinen Stimmung ≈&nbsp;49 Cent.</ref>
<ref name="Oktve">Das musikalische [[Intervall (Musik)|Intervall]] einer [[Oktave]] entspricht einer Verdopplung der Frequenz.</ref>
<ref name="Oktve">Das musikalische [[Intervall (Musik)|Intervall]] einer [[Oktave]] entspricht einer Verdopplung der Frequenz.</ref>
</references>
</references>
Aus der letzten Zeile der Tabelle wird ersichtlich, dass sich alle Intervalle der '''diatonischen Tonleiter''' (siehe [[Reine Stimmung#Frequenzverhältnisse der Dur- und Molltonleiter in reiner Stimmung|reine Stimmung]]) aus der Obertonreihe herleiten lassen. Insbesondere: Halbton (Frequenzverhältnis <sup>16</sup>/<sub>15</sub>), großer und kleiner Ganzton (<sup>9</sup>/<sub>8</sub> und <sup>10</sup>/<sub>9</sub>), kleine Terz (<sup>6</sup>/<sub>5</sub>), große Terz (<sup>5</sup>/<sub>4</sub>), Quart (<sup>4</sup>/<sub>3</sub>), Quint (<sup>3</sup>/<sub>2</sub>) und Oktave (<sup>2</sup>/<sub>1</sub>).
Aus der letzten Zeile der Tabelle wird ersichtlich, dass sich alle Intervalle der '''diatonischen Tonleiter''' (siehe [[Reine Stimmung#Frequenzverhältnisse der Dur- und Molltonleiter in reiner Stimmung|reine Stimmung]]) aus der Obertonreihe herleiten lassen. Insbesondere: Halbton (Frequenzverhältnis {{Bruch|16|15}}), großer und kleiner Ganzton ({{Bruch|9|8}} und {{Bruch|10|9}}), kleine Terz ({{Bruch|6|5}}), große Terz ({{Bruch|5|4}}), Quart ({{Bruch|4|3}}), Quint ({{Bruch|3|2}}) und Oktave ({{Bruch|2|1}}).


=== Grenzen des einfachen Modells ===
=== Grenzen des einfachen Modells ===
Zeile 146: Zeile 148:
{{Hauptartikel|Inharmonizität}}
{{Hauptartikel|Inharmonizität}}


Abweichungen von den harmonischen Verhältnissen der Teiltöne sind individuell vom Typ des Instruments abhängig. Diese unter dem Begriff [[Inharmonizität]] bekannten Abweichungen werden zum Beispiel beim Klavier im Wesentlichen durch das [[Biegemoment]] der Saite ausgelöst.<ref name="Practical Applied Mathematics 2005">Practical Applied Mathematics: Modeling, Analysis, Approximation, Sam Howison, 2005, ISBN 0-521-60369-2, Kapitel 15.3 Seite 209ff</ref> Wegen der hohen Saitenspannung sind zumindest für die Bassaiten sehr dicke Saiten nötig, wodurch sich dieser Effekt noch verstärkt. Außerdem sind höhere Obertöne stärker davon betroffen als niedrigere.<ref name="Practical Applied Mathematics 2005"/> Die genauere Analyse von derartigen Harmonischen ist wesentlich aufwändiger und erfordert daher zur Beschreibung komplexere Modelle als die Analyse und Beschreibung von sehr harmonischen Tönen. (Siehe auch [[Audiosignal]]).
Abweichungen von den harmonischen Verhältnissen der Teiltöne treten bei vielen Instrumenten auf. Diese unter dem Begriff [[Inharmonizität]] bekannten Abweichungen werden zum Beispiel beim Klavier im Wesentlichen durch das [[Biegemoment]] der Saite hervorgerufen.<ref name="Practical Applied Mathematics 2005">Sam Howison: ''Practical Applied Mathematics. Modeling, Analysis, Approximation.'' 2005, ISBN 0-521-60369-2, Kapitel 15.3, Seite 209 ff.</ref> Besonders die dicken Basssaiten sind hiervon betroffen. Höhere Obertöne sind stärker betroffen als niedrigere.<ref name="Practical Applied Mathematics 2005" /> Die genauere Analyse derartiger Obertöne ist aufwändiger und erfordert zur Beschreibung komplexere Modelle als die Analyse und Beschreibung von „sehr harmonischen“ Tönen. (Siehe auch [[Audiosignal]].)


==== Geräuschanteile ====
==== Geräuschanteile ====
Außerdem treten auch nicht-periodische Schwingungen auf, die ein eher breitbandiges [[Spektrogramm|Frequenzspektrum]] besitzen und sich nicht durch Grundton und harmonische Obertöne beschreiben lassen, z.&nbsp;B. Anschlaggeräusche bei [[Saiteninstrument]]en, Anblasgeräusche bei [[Blasinstrument]]en und [[Orgelpfeife]]n sowie [[Konsonant]]en bei der [[Menschliche Stimme|menschlichen Stimme]]. Die Analyse dieser Klangkomponenten erfordert moderne elektronische Messtechnik und mathematische Modelle, deren Lösungen nur mit leistungsfähigen Computern möglich sind.
Außerdem treten auch nicht-periodische Schwingungen auf, die ein eher breitbandiges [[Spektrogramm|Frequenzspektrum]] besitzen und sich nicht durch Grundton und harmonische Obertöne beschreiben lassen, z.&nbsp;B. Anschlaggeräusche bei [[Saiteninstrument]]en, Anblasgeräusche bei [[Blasinstrument]]en und [[Orgelpfeife]]n sowie [[Konsonant]]en bei der [[Menschliche Stimme|menschlichen Stimme]]. Die Analyse dieser Klangkomponenten erfordert moderne elektronische Messtechnik und mathematische Modelle, deren Lösungen nur mit leistungsfähigen Computern berechenbar sind.


==== Unschärfe ====
==== Unschärfe ====
Mathematisch sind Schwingungen nur dann sinusförmig, wenn sie unendlich lange andauern und andauern werden. Schwingungen sind in der Praxis immer nur [[quasiperiodisch]] oder fastperiodisch<ref>Signale, Systeme und Klangsynthese: Grundlagen der Computermusik, Band 2 von Zürcher Musikstudien, Martin Neukom, 2005, ISBN 3-03910-819-0, Seite 56 [http://books.google.de/books?id=SdovvARzhQwC&lpg=PA48&dq=ton%20musik%20akustik&pg=PA56#v=onepage&q=ton%20musik%20akustik&f=false Online]</ref>. Die Sinusfunktion erstreckt sich beidseitig in die Unendlichkeit und ein Abschneiden der Dauer führt mathematisch zu etwas Anderem, einer zeitlich begrenzten Welle. In psychoakustischer Konsequenz ergeben sich beim Abschneiden von langandauernden kontinuierlichen, statischen Sinustönen oder Sinustongemischen breitbandige Artefakte.<ref>Signale- Prozesse- Systeme: Eine multimediale und interaktive Einführung in die Signalverarbeitung, Ulrich Karrenberg, 2009
Mathematisch sind Schwingungen nur dann sinusförmig, wenn sie sowohl schon unendlich lange andauern als auch noch unendlich lange andauern werden. Schwingungen sind in der Praxis immer nur [[quasiperiodisch]] oder fastperiodisch.<ref>Martin Neukom: ''Signale, Systeme und Klangsynthese. Grundlagen der Computermusik.'' Band 2 von ''Zürcher Musikstudien.'' 2005, ISBN 3-03910-819-0, Seite 56, [http://books.google.de/books?id=SdovvARzhQwC&lpg=PA48&dq=ton%20musik%20akustik&pg=PA56#v=onepage&q=ton%20musik%20akustik&f=false online.]</ref> Die Sinusfunktion erstreckt sich beidseitig in die Unendlichkeit und ein Abschneiden der Dauer führt mathematisch zu etwas anderem, einer zeitlich begrenzten Welle. In psychoakustischer Konsequenz ergeben sich beim Abschneiden von langandauernden kontinuierlichen, statischen Sinustönen oder Sinustongemischen breitbandige Artefakte.<ref>Ulrich Karrenberg: ''Signale Prozesse Systeme. Eine multimediale und interaktive Einführung in die Signalverarbeitung.'' 2009, ISBN 3-642-01863-7, Seite 84, [http://books.google.de/books?id=8LbzPLPa0HsC&lpg=PA85&dq=ton%20klang%20musik%20akustik&pg=PA81#v=onepage&q=ton%20klang%20musik%20akustik&f=false online.]</ref>
ISBN 3-642-01863-7, Seite 84 [http://books.google.de/books?id=8LbzPLPa0HsC&lpg=PA85&dq=ton%20klang%20musik%20akustik&pg=PA81#v=onepage&q=ton%20klang%20musik%20akustik&f=false Online]</ref>


Bei kurzandauernden Vorgängen solcher Art – wie sie bei allen Instrumenten auftreten, bei denen nicht stets Energie nachgereicht wird, also vor allem den Zupf- und Schlaginstrumenten (auch dem Klavier) – ist die Grundvoraussetzung des Dauertones noch nicht einmal mehr in Näherung gegeben.
Bei kurzandauernden Vorgängen solcher Art –&nbsp;wie sie bei allen Instrumenten auftreten, bei denen nicht stets Energie nachgereicht wird, also vor allem bei den Zupf- und Schlaginstrumenten (auch beim Klavier)&nbsp;– ist die Grundvoraussetzung des Dauertones nicht einmal näherungsweise erfüllt.


In der Kultur der Ingenieurwissenschaften ging man meistens von der Situation aus, dass Vorgänge langandauernd und langsam veränderlich sind (bei der Modulation eines Radiosenders ist dies der Fall). Nur dann ergeben die Fouriertransformation und die daraus implizit im Artikel folgenden Begriffe einen Sinn. Erst in den letzten Dekaden hat sich die Einsicht durchgesetzt, dass bei schnell veränderlichen und kurz andauernden Vorgängen die [[Wavelet-Transformation]] Anwendung finden muss, worauf Begriffe wie etwa Frequenz neu gedeutet werden müssen. Zur Grundtonerkennung sind heute eine Vielfalt von verschieden Methoden in Verwendung.<ref>Untersuchung von Melodiesuchsystemen sowie von Verfahren zu ihrer Funktionsprüfung, Johann-Markus Batke, 2006, ISBN 3-86727-085-6, Seite 71 [http://books.google.de/books?id=MFjUCMLvwSQC&lpg=PA11&dq=ton%20musik%20akustik&pg=PA71#v=onepage&q=Autokorrelationsmethode&f=false Online]</ref>
In der Kultur der Ingenieurwissenschaften ging man meistens von der Situation aus, dass Vorgänge langandauernd und langsam veränderlich sind (bei der Modulation eines Radiosenders ist dies der Fall). Nur dann ergeben die Fouriertransformation und die daraus implizit im Artikel folgenden Begriffe einen Sinn. Erst um die Wende zum 21.&nbsp;Jhdt. hat sich die Einsicht durchgesetzt, dass bei schnell veränderlichen und kurz andauernden Vorgängen die [[Wavelet-Transformation]] Anwendung finden muss, worauf Begriffe wie etwa „Frequenz“ neu gedeutet werden müssen. Zur Grundtonerkennung sind seitdem eine Vielfalt verschiedener Methoden in Verwendung.<ref>Johann-Markus Batke: ''Untersuchung von Melodiesuchsystemen sowie von Verfahren zu ihrer Funktionsprüfung.'' 2006, ISBN 3-86727-085-6, Seite 71, [http://books.google.de/books?id=MFjUCMLvwSQC&lpg=PA11&dq=ton%20musik%20akustik&pg=PA71#v=onepage&q=Autokorrelationsmethode&f=false online.]</ref>


Musik beinhaltet wesentlich solche Vorgänge. Insofern ist auch aus dieser Sicht Kritik an überkommenen Vorstellungen zu üben. Zu sehr sind unsere Vorstellungen von den für die Elektronik in weiten Bereiche vollständig ausreichenden heute verbreitenden Modellen geprägt. Dass man sich der komplexen Zusammenhänge bereits bewusst war, bevor [[Hermann von Helmholtz]] eine mathematische Theorie zur Erklärung der Klangfarbe durch Obertöne in ''Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik (1863)'' veröffentlichte, zeigt ein Auszug aus ''Die Musik und die musikalischen Instrumente: in ihrer Beziehung zu den Gesetzen der Akustik'', Friedrich Georg Karl Zamminer, 1855, Seite 176 „Alle tönenden Körper, welches ihre Substanz, ihre Gestalt, ihr Elastizitäts- und Spannungszustand sein möge, sind außer den Schwingungen in ganzer Masse, welche den Grundton geben, noch unendlich vieler Abtheilungsarten und eben so vieler Obertöne fähig. Die Schwingungszustände, welche sie anzunehmen vermögen, sind um so mannigfaltiger, je weniger einfach ihre Form ist. Nur cylindrische und prismatische Luftsäulen und ähnlich wie diese schwingende Stäbe von geringem Durchmesser haben eine so einfache harmonische Oberreihe wie die gespannten Saiten; weit reicher schon ist die Menge der Obertöne bei Körpern, welche, wie Platten und gespannte Häute, sich in ebener oder gekrümmter Fläche ausbreiten, am Mannigfaltigsten die von beliebig in jedem Sinne ausgedehnten festen Massen und Lufträumen.“ <ref>Die Musik und die musikalischen Instrumente: in ihrer Beziehung zu den Gesetzen der Akustik, Friedrich Georg Karl Zamminer, 1855 ,Seite 176 [http://books.google.de/books?id=F8srAAAAYAAJ&dq=obert%C3%B6ne%20Glocke&pg=PA178&ci=156%2C846%2C756%2C429&source=bookclip Online]</ref>
Musik beinhaltet wesentlich solche Vorgänge. Insofern ist auch aus dieser Sicht Kritik an überkommenen Vorstellungen zu üben. Zu sehr sind unsere Vorstellungen von den für die Elektronik in weiten Bereichen vollständig ausreichenden heute verbreiteten Modellen geprägt. Dass man sich der komplexen Zusammenhänge bereits bewusst war, bevor [[Hermann von Helmholtz]] eine mathematische Theorie zur Erklärung der Klangfarbe durch Obertöne in ''Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik (1863)'' veröffentlichte, zeigt ein Auszug aus Zamminers ''Die Musik und die musikalischen Instrumente'' von 1885: „Alle tönenden Körper, welches ihre Substanz, ihre Gestalt, ihr Elasticitäts- und Spannungszustand sein möge, sind außer den Schwingungen in ganzer Masse, welche den Grundton geben, noch unendlich vieler Abtheilungsarten und eben so vieler Obertöne fähig. Die Schwingungszustände, welche sie anzunehmen vermögen, sind um so mannichfaltiger, je weniger einfach ihre Form ist. Nur cylindrische und prismatische Luftsäulen und ähnlich wie diese schwingende Stäbe von geringem Durchmesser haben eine so einfache harmonische Oberreihe wie die gespannten Saiten; weit reicher schon ist die Menge der Obertöne bei Körpern, welche, wie Platten und gespannte Häute, sich in ebener oder gekrümmter Fläche ausbreiten, am Mannichfaltigsten die von beliebig in jedem Sinne ausgedehnten festen Massen und Lufträumen.“<ref>Friedrich Georg Karl Zamminer: ''Die Musik und die musikalischen Instrumente in ihrer Beziehung zu den Gesetzen der Akustik.'' 1855, Seite 176, [http://books.google.de/books?id=F8srAAAAYAAJ&dq=obert%C3%B6ne%20Glocke&pg=PA178&ci=156%2C846%2C756%2C429&source=bookclip online.]</ref>


== Obertöne und Klangfarbe ==
== Obertöne und Klangfarbe ==
=== Obertöne der menschlichen Stimme ===
=== Obertöne der menschlichen Stimme ===
In der [[Menschliche Stimme|menschlichen Stimme]] schwingt, genau wie in den meisten klangerzeugenden physikalischen Systemen, ein komplexes Obertonspektrum mit. In der besonderen Gesangstechnik des [[Obertongesang]]s kann man diese hohen Frequenzen zum Dominieren bringen.
In der [[Menschliche Stimme|menschlichen Stimme]] schwingt, genau wie in den meisten klangerzeugenden physikalischen Systemen, ein komplexes Obertonspektrum mit. In der besonderen Gesangstechnik des [[Obertongesang]]s kann man diese hohen Frequenzen zum Dominieren bringen.
Zeile 170: Zeile 170:
=== Obertöne unterschiedlicher Instrumente ===
=== Obertöne unterschiedlicher Instrumente ===
[[Datei:Schwingende Luftsäulen.svg|mini|Wellen in [[Prinzipal (Orgel)|offenen]] und [[gedackt]]en Röhren. Die Wellenknoten sind blau.]]
[[Datei:Schwingende Luftsäulen.svg|mini|Wellen in [[Prinzipal (Orgel)|offenen]] und [[gedackt]]en Röhren. Die Wellenknoten sind blau.]]
Der spezifische [[Klangfarbe|Klang]] eines Instrumentes ergibt sich aus den folgenden Parametern:
Der [[Klangfarbe|spezifische Klang]] eines Instrumentes ergibt sich aus den Antworten auf folgende Fragen:
* Welche Obertöne überhaupt vorhanden sind
* Welche Obertöne sind überhaupt vorhanden?
* Wie laut diese Obertöne im Verhältnis zueinander sind
* Wie laut sind diese Obertöne im Verhältnis zueinander?
* Wie sich die Lautstärke und Frequenz der einzelnen Obertöne ändert, während der Ton erklingt
* Wie ändern sich die Lautstärke und Frequenz der einzelnen Obertöne, während der Ton erklingt?
* Welche Nebengeräusche hinzukommen (Anschlaggeräusche, Blasgeräusche …)
* Welche Nebengeräusche (Anschlaggeräusche, Blasgeräusche …) kommen hinzu?


Folgende Instrumente haben einen besonders charakteristischen Teiltonaufbau:
Folgende Instrumente haben einen besonders charakteristischen Teiltonaufbau:
* [[Streichinstrument]]e besitzen ein sehr reichhaltiges Teiltonspektrum
* [[Streichinstrument]]e besitzen ein sehr reichhaltiges Teiltonspektrum.
* [[Klarinette]]n betonen die Lautstärke der ungeraden Teiltöne
* [[Klarinette]]n betonen die Lautstärke der ungeraden Teiltöne.
* Beim [[Fagott]] ist der Grundton sehr viel schwächer als die ersten Obertöne
* Beim [[Fagott]] ist der Grundton sehr viel schwächer als die ersten Obertöne.
* [[Glocke]]n betonen oftmals die Terzen sehr stark und die Obertonzusammensetzung ist komplex
* [[Glocke]]n betonen oftmals die Terzen sehr stark und die Obertonzusammensetzung ist komplex.
* [[Stimmgabel]]n erzeugen fast nur den Grundton
* [[Stimmgabel]]n erzeugen fast nur den Grundton.


Bei Instrumenten mit einfachen Obertonzusammensetzungen sind die [[Frequenz]]en der Obertöne annähernd ganzzahlige Vielfache der Frequenz des Grundtons. Hierzu gehören die [[Chordophon]]e (Saiteninstrumente) und die [[Aerophon]]e mit schwingender Luftsäule. Das ist natürlich auch nur eine idealisierte Annahme; so besteht bei wirklichen (nicht unendlich dünnen) Saiten eine Inharmonizität. Gerade die sehr geringen Abweichungen von den idealen ''Harmonischen'' machen den Klang eines einzelnen Instrumentes unverwechselbar und lebendig.
Bei Instrumenten mit einfachen Obertonzusammensetzungen sind die [[Frequenz]]en der Obertöne annähernd ganzzahlige Vielfache der Frequenz des Grundtons. Hierzu gehören die [[Chordophon]]e (Saiteninstrumente) und die [[Aerophon]]e mit schwingender Luftsäule. Das ist natürlich auch nur eine idealisierte Annahme; so besteht bei wirklichen (nicht unendlich dünnen) Saiten eine Inharmonizität. Gerade die sehr geringen Abweichungen von den idealen ''Harmonischen'' machen den Klang eines einzelnen Instrumentes unverwechselbar und lebendig.


Bei den meisten Holzblasinstrumenten ist das sehr nahe der idealisierte Annahme, auch für viele Saiteninstrumente stimmt dieses recht gut. Beim Klavier allerdings ist das ganzzahlige Frequenzverhältnis nur annähernd erfüllt. Besonders die sehr hohen Obertöne liegen schon recht weit neben den Frequenzen mit ganzzahligen Verhältnissen zum Grundton. Je höher man die Leiter der Obertöne emporsteigt, desto mehr weichen deren Frequenzen von den genau harmonischen ab. Es hat sich sogar herausgestellt, dass die dem Klavier eigene Klangfarbe sehr wesentlich mit dieser Abweichung von den genau harmonischen Obertönen zusammenhängt. z.&nbsp;B. hören sich Imitationen eines Klaviers nicht besonders klavierähnlich an, wenn diese Abweichung der Obertonreihe bei der künstlichen Erzeugung des Tones nicht mit berücksichtigt wird.
Bei den meisten Holzblasinstrumenten ist das sehr nahe der idealisierte Annahme, auch für viele Saiteninstrumente stimmt dies recht gut. Beim Klavier allerdings ist das ganzzahlige Frequenzverhältnis nur annähernd erfüllt. Besonders die sehr hohen Obertöne liegen schon recht weit neben den Frequenzen mit ganzzahligen Verhältnissen zum Grundton. Je höher man die Leiter der Obertöne emporsteigt, desto mehr weichen deren Frequenzen von den genau harmonischen ab. Es hat sich sogar herausgestellt, dass die dem Klavier eigene Klangfarbe sehr wesentlich mit dieser Abweichung von den genau harmonischen Obertönen zusammenhängt. Z.&nbsp;B. hören sich Imitationen eines Klaviers nicht besonders klavierähnlich an, wenn diese Abweichung der Obertonreihe bei der künstlichen Erzeugung des Tones nicht mitberücksichtigt wird.


Die [[Eigenfrequenz]]en und deren harmonische Obertöne hängen vom jeweiligen Klangerzeuger ab, und werden durch die Abmessungen und Beschaffenheit des Körpers bestimmt. Es gibt Instrumente, bei denen sich die Obertonzusammensetzungen relativ einfach beschreiben lassen, und andere, die sehr komplexe Beschreibungsmodelle erfordern. Bei Instrumenten mit komplexen Obertonzusammensetzungen stehen viele Frequenzen der Obertöne in komplizierten nicht ganzzahligen Verhältnissen zueinander. Die Obertöne der [[Membranophon]]e mit runder [[Schwingungsmembran|Membran]] haben die Eigenfrequenzen einer [[Besselsche Differentialgleichung|Besselschen Differentialgleichung]]. Bei [[Idiophon]]en können sich je nach der Form des Klangkörpers ganz unterschiedliche Obertonreihen ergeben&nbsp;– bei den [[Stabspiel]]en etwa sind es die Eigenfrequenzen der Biegeschwingung eines [[Balkentheorie|Balkens]].
Die [[Eigenfrequenz]]en und deren harmonische Obertöne hängen vom jeweiligen Klangerzeuger ab und werden durch die Abmessungen und Beschaffenheit des Körpers bestimmt. Es gibt Instrumente, bei denen sich die Obertonzusammensetzungen relativ einfach beschreiben lassen, und andere, die sehr komplexe Beschreibungsmodelle erfordern. Bei Instrumenten mit komplexen Obertonzusammensetzungen stehen viele Frequenzen der Obertöne in komplizierten nichtganzzahligen Verhältnissen zueinander. Die Obertöne der [[Membranophon]]e mit runder [[Schwingungsmembran|Membran]] haben die Eigenfrequenzen einer [[Besselsche Differentialgleichung|Besselschen Differentialgleichung]]. Bei [[Idiophon]]en können sich je nach der Form des Klangkörpers ganz unterschiedliche Obertonreihen ergeben&nbsp;– bei den [[Stabspiel]]en etwa sind es die Eigenfrequenzen der Biegeschwingung eines [[Balkentheorie|Balkens]].


Künstlich aus Sinustönen hergestellte Obertonspektren nennt man synthetische Klänge (siehe [[Klangsynthese]], [[Synthesizer]]). Eine reine [[Kippschwingung|Sägezahnschwingung]] zeichnet sich dadurch aus, dass sie zum Grundton alle seine Obertöne enthält, weshalb man sie zu den Zeiten der analog-elektronischen Musikinstrumente bevorzugt als Ausgangsschwingung einsetzte.
Künstlich aus Sinustönen hergestellte Obertonspektren nennt man synthetische Klänge (siehe [[Klangsynthese]], [[Synthesizer]]). Eine reine [[Kippschwingung|Sägezahnschwingung]] zeichnet sich dadurch aus, dass sie zum Grundton alle seine Obertöne enthält, weshalb man sie zu den Zeiten der analog-elektronischen Musikinstrumente bevorzugt als Ausgangsschwingung einsetzte.


{{Anker|Brillanz}}
=== Wirkung der Obertöne: Brillanz und Dumpfheit ===
=== Wirkung der Obertöne: Brillanz und Dumpfheit ===
{{Anker|Brillanz}}{{Anker|Dumpfheit}}
{{Anker|Brillanz}}{{Anker|Dumpfheit}}
Der Anteil der Obertöne am Gesamtspektrum und die daraus resultierende [[Klangfarbe]] kann durch Worte wie ''Brillanz'', ''Schärfe'', ''Reinheit'', ''Dumpfheit'' u.&nbsp;a. beschrieben werden.
Der Anteil der Obertöne am Gesamtspektrum und die daraus resultierende [[Klangfarbe]] kann durch Worte wie ''Brillanz, Schärfe, Reinheit, Dumpfheit'' u.&nbsp;a. beschrieben werden.


Im Allgemeinen klingen Töne umso brillanter (Violine), schärfer (Trompete) oder farbiger (Oboe, Fagott), je mehr Obertöne sie haben, und umso reiner und klarer (Flöte) bzw. blasser oder dumpfer (tiefe Klarinette, [[Gedackt|Gedeckte Orgelregister]]), je weniger sie haben.
Im Allgemeinen klingen Töne umso brillanter (Violine), schärfer (Trompete) oder farbiger (Oboe, Fagott), je mehr Obertöne sie haben, und umso reiner und klarer (Flöte) bzw. blasser oder dumpfer (tiefe Klarinette, [[Gedackt|gedeckte Orgelregister]]), je weniger sie haben.


Reine Töne ohne Obertöne, also [[Sinuston|Sinustöne]], können praktisch gar nicht erzeugt werden. Näherungsweise können sie auf mechanischem Wege nur mit sehr geringen Schallpegeln erzeugt werden (Stimmgabel oder Hohlraumresonatoren, sehr sanft angeregt). Elektronisch ist die Erzeugung näherungsweise reiner Sinustöne problemlos möglich. Sie klingen bei tieferer Frequenz dumpf, breit und strömend, bestimmte Orgelregister kommen dem nahe. Bei höheren Frequenzen wird der Unterschied zu Klängen mit Obertönen geringer, weil diese Obertöne außerhalb des Hörbereichs liegen. Ein Beispiel der Situation für mittlere Frequenzen ist der 1000-Hertz-Ton des Fernsehtestbilds, wobei der Lautsprecher jedoch durch seine Verzerrungen schon wieder sein eigenes Obertonspektrum hinzufügt. Da die gesamte Energie nur in einem schmalen Frequenzbereich auftritt, können pegelstarke Sinustöne sehr unangenehm sein. Überhaupt sind Sinustöne ein Prüfstein für jeden Lautsprecher, da die Gefahr von elektrischer und mechanischer Überlastung einerseits sehr hoch ist, andererseits Verzerrungsprodukte mit hörbaren Pegeln sofort auffallen und mechanische Konstruktionsprobleme mit bisweilen schnarrenden oder fauchenden Resonanzen offengelegt werden.
Reine Töne ohne Obertöne, also [[Sinuston|Sinustöne]], können praktisch gar nicht erzeugt werden. Näherungsweise können sie auf mechanischem Wege nur mit sehr geringen Schallpegeln erzeugt werden (Stimmgabel oder Hohlraumresonatoren, sehr sanft angeregt). Elektronisch ist die Erzeugung näherungsweise reiner Sinustöne problemlos möglich. Sie klingen bei tieferer Frequenz dumpf, breit und strömend, bestimmte Orgelregister kommen dem nahe. Bei höheren Frequenzen wird der Unterschied zu Klängen mit Obertönen geringer, weil diese Obertöne außerhalb des Hörbereichs liegen. Ein Beispiel der Situation für mittlere Frequenzen ist der 1000-Hertz-Ton des Fernsehtestbilds, wobei der Lautsprecher jedoch durch seine Verzerrungen schon wieder sein eigenes Obertonspektrum hinzufügt. Da die gesamte Energie nur in einem schmalen Frequenzbereich auftritt, können pegelstarke Sinustöne sehr unangenehm sein. Überhaupt sind Sinustöne ein Prüfstein für jeden Lautsprecher, da die Gefahr von elektrischer und mechanischer Überlastung einerseits sehr hoch ist, andererseits Verzerrungsprodukte mit hörbaren Pegeln sofort auffallen und mechanische Konstruktionsprobleme mit bisweilen schnarrenden oder fauchenden Resonanzen offengelegt werden.


In einem Mehrweg-[[Lautsprecher]] ([[Elektroakustik]]) ist in erster Linie der [[Hochtonlautsprecher|Hochtöner]] für die Brillanz, also für die Klanghelligkeit und die Klangfarbe der Wiedergabe zuständig.
In einem Mehrweg-[[Lautsprecher]] ([[Elektroakustik]]) ist in erster Linie der [[Hochtonlautsprecher|Hochtöner]] für die Brillanz, also für die Klanghelligkeit und die Klangfarbe der Wiedergabe, zuständig.


Höhere Obertöne sind bei mechanischen Musikinstrumenten in der Regel leiser ([[Pegel (Physik)|pegelschwächer]]) als tiefere.
Höhere Obertöne sind bei mechanischen Musikinstrumenten in der Regel leiser ([[Pegel (Physik)|pegelschwächer]]) als tiefere:
* Zum einen werden bei mechanischen Tonerzeugern höhere Frequenzen nur wesentlich schwächer angeregt als tiefere (z.&nbsp;B. nimmt bei einer schwingenden Saite die Schwingungsamplitude der Obertöne mit steigender Frequenz ab).
* Zum einen werden bei mechanischen Tonerzeugern höhere Frequenzen nur wesentlich schwächer angeregt als tiefere (z.&nbsp;B. nimmt bei einer schwingenden Saite die Schwingungsamplitude der Obertöne mit steigender Frequenz ab).
* Zum anderen werden höhere Frequenzen in der Luft stärker gedämpft. Daher ist bei einer [[Beschallung]] über große Flächen die Brillanz der Wiedergabe meistens relativ schlecht.
* Zum anderen werden höhere Frequenzen in der Luft stärker gedämpft. Daher ist bei einer [[Beschallung]] über große Flächen die Brillanz der Wiedergabe meistens relativ schlecht.


== Hörbarkeit von Obertönen ==
== Hörbarkeit von Obertönen ==
 
In der Regel werden Obertöne nicht einzeln wahrgenommen, sondern ergeben den [[Klangfarbe|Klang eines Tons]]. In bestimmten Fällen oder unter besonderen Bedingungen können sie aber auch einzeln gehört oder hörbar gemacht werden.
In der Regel werden Obertöne nicht einzeln wahrgenommen, sondern ergeben den [[Klangfarbe|Klang]] eines Tons. In bestimmten Fällen oder unter besonderen Bedingungen können sie aber auch einzeln gehört oder hörbar gemacht werden.
* Manche Menschen sind in der Lage, aus einem [[Klang]] einzelne Obertöne auch ohne jegliche Hilfe selektiv herauszuhören. Dieses gilt besonders bei sehr stabilen Tönen wie beispielsweise bei lang ausgehaltenen Tönen von [[Orgelpfeife]]n.
* Manche Menschen sind in der Lage, aus einem [[Klang]] einzelne Obertöne auch ohne jegliche Hilfe selektiv herauszuhören. Dieses gilt besonders bei sehr stabilen Tönen wie beispielsweise bei lang ausgehaltenen Tönen von [[Orgelpfeife]]n.
* Die Gesangstechnik des Obertonsingens macht die Obertöne deutlich wahrnehmbar. Beispiele sind der [[Obertongesang]] mongolischer und tuvinischer Völker. Auch in der westlichen Musik gibt es seit Ende der sechziger Jahre wieder eine Belebung der Obertonkultur.
* Die Gesangstechnik des Obertonsingens macht die Obertöne deutlich wahrnehmbar. Beispiele sind der [[Obertongesang]] mongolischer und tuvinischer Völker. Auch in der westlichen Musik gibt es seit Ende der 1960er Jahre wieder eine Belebung der Obertonkultur.
* Auch im instrumentalen Bereich kann man Obertöne deutlich hörbar machen. Typische [[Musikinstrument|Instrumente]] hierfür sind z.&nbsp;B. das [[Didgeridoo]], [[Fujara]] oder [[Klangschale]]n.
* Auch im instrumentalen Bereich kann man Obertöne deutlich hörbar machen. Typische [[Musikinstrument|Instrumente]] hierfür sind z.&nbsp;B. das [[Didgeridoo]], die [[Fujara]] oder [[Klangschale]]n.
* Bei Saiteninstrumenten können Töne in der Tonhöhe von Obertönen durch Flageolett-Spielweise (siehe [[Flageolettton]]) erzeugt werden. Dabei wird die Saite mit der Greifhand nur leicht berührt anstatt sie auf das Griffbrett zu drücken. Allerdings erklingt dann meist ein anderer Ton als bei normalem Greifen.
* Bei Saiteninstrumenten können Töne in der Tonhöhe von Obertönen durch Flageolett-Spielweise (siehe [[Flageolettton]]) erzeugt werden. Dabei wird die Saite mit der Greifhand nur leicht berührt anstatt sie auf das Griffbrett zu drücken. Allerdings erklingt dann meist ein anderer Ton als bei normalem Greifen.
* Auf dem [[Klavier]] kann man Obertöne auf drei Arten hörbar machen:
* Auf dem [[Klavier]] kann man Obertöne auf drei Arten hörbar machen:
*# Indem man die [[Taste]]n eines [[Akkord]]s aus der Obertonreihe sanft niederdrückt, ohne dass die Hämmer die [[Saite]] berühren, und dann den Grundton im Bassbereich kurz und stark anschlägt. Die Obertöne erzeugen nun eine [[Resonanz (Physik)|Resonanz]] auf den ungedämpften [[Saite]]n der niedergedrückt gehaltenen [[Taste]]n, die man deutlich hören kann.
*# Indem man die [[Taste]]n eines [[Akkord]]s aus der Obertonreihe sanft niederdrückt, ohne dass die Hämmer die [[Saite]] berühren, und dann den Grundton im Bassbereich kurz und stark anschlägt. Die Obertöne erzeugen nun eine [[Resonanz (Physik)|Resonanz]] auf den ungedämpften Saiten der niedergedrückt gehaltenen Tasten, die man deutlich hören kann.
*# Indem man eine Taste im Bassbereich auf die beschriebene Weise stumm niederdrückt und dann einen oder mehrere Töne aus der zugehörigen Obertonreihe kurz und kräftig anschlägt. Durch Resonanz wird die ungedämpfte Basssaite angeregt, mit den Frequenzen dieser Obertöne zu schwingen. Die angeschlagenen Töne klingen echoartig weiter, obwohl die zugehörigen Saiten abgedämpft wurden.
*# Indem man eine Taste im Bassbereich auf die beschriebene Weise stumm niederdrückt und dann einen oder mehrere Töne aus der zugehörigen Obertonreihe kurz und kräftig anschlägt. Durch Resonanz wird die ungedämpfte Basssaite angeregt, mit den Frequenzen dieser Obertöne zu schwingen. Die angeschlagenen Töne klingen echoartig weiter, obwohl die zugehörigen Saiten abgedämpft wurden.
:Insbesondere der erste Effekt wird auch von [[Komponist]]en in ihren Werken verwendet (z.&nbsp;B. [[Béla Bartók]]: ''Mikrokosmos'', Band IV).
*# Auch am Klavier kann man einen Flageolettton erzeugen. Dafür drückt man leicht auf den erforderlichen Punkt auf einer Saite und schlägt mit der anderen Hand die entsprechende Taste an. Das Gleiche funktioniert auch mittels [[Präpariertes Klavier|Präparierung]] der Saite, das beste Material dafür ist Gummi.
*# Auch am Klavier kann man einen Flageolettton erzeugen. Dafür drückt man leicht auf den erforderlichen Punkt auf einer Saite und schlägt mit der anderen Hand die entsprechende Taste an. Das gleiche funktioniert auch mittels [[Präpariertes Klavier|Präparierung]] der Saite, das beste Material dafür ist Gummi.
:Insbesondere der erste Effekt wird auch von [[Komponist]]en in ihren Werken verwendet (z.&nbsp;B. [[Béla Bartók]]: ''Mikrokosmos,'' Band IV).


== Anwendungen ==
== Anwendungen ==
=== Die Orgel und ihre Register ===
=== Die Orgel und ihre Register ===
Besonders wichtig ist die harmonische Obertonreihe bei der [[Orgel]]. Durch verschiedene [[Orgelregister]], die jeweils einzelne bis auf wenige Ausnahmen harmonische Obertöne erzeugen ([[Aliquotregister|Aliquoten]]), lassen sich Klangfarben durch eine einfache Art [[Additive Synthese]] erzeugen. Bei Pfeifenorgeln ist nur ein „an“ oder „aus“ der Register möglich. Die am meisten verwendeten harmonischen Obertöne sind dabei Oktaven (2., 4., 8., 16., … Partialton), Quinten (3., 6., 12., … Partialton) und große Terzen (5., 10., … Partialton), in modernen Orgeln auch die kleine Septime (7., 14., … Partialton) und die große None (9., 18., … Partialton).
Besonders wichtig ist die harmonische Obertonreihe bei der [[Orgel]]. Durch verschiedene [[Orgelregister]], die jeweils einzelne bis auf wenige Ausnahmen harmonische Obertöne erzeugen ([[Aliquotregister|Aliquoten]]), lassen sich Klangfarben durch eine einfache Art [[Additive Synthese|additiver Synthese]] erzeugen. Bei Pfeifenorgeln ist nur ein „an“ oder „aus“ der Register möglich. Die am meisten verwendeten harmonischen Obertöne sind dabei Oktaven (2., 4., 8., 16.,&nbsp;… Partialton), Quinten (3., 6., 12.,&nbsp;… Partialton) und große Terzen (5., 10.,&nbsp;… Partialton), in modernen Orgeln auch die kleine Septime (7., 14.,&nbsp;… Partialton) und die große None (9., 18.,&nbsp;… Partialton).


Eine davon inspirierte Klangsynthese findet bei der [[Hammond-Orgel]] statt. Hierbei lassen sich die Anteile der Teiltöne durch [[Schieberegler]] zusätzlich variieren.
Eine davon inspirierte Klangsynthese findet bei der [[Hammond-Orgel]] statt. Hierbei lassen sich die Anteile der Teiltöne durch [[Schieberegler]] zusätzlich variieren.


=== Residualtöne ===
=== Residualtöne ===
Das menschliche Hörzentrum ist in der Lage, zu einem (auch nur teilweise) erklingenden Obertonspektrum die Grundfrequenz wahrzunehmen, auch wenn diese nicht erklingt. Diesen „hinzugefügten“ Grundton bezeichnet man auch als ''[[Residualton]]''.
Das menschliche Hörzentrum ist in der Lage, zu einem (auch nur teilweise) erklingenden Obertonspektrum die Grundfrequenz wahrzunehmen, auch wenn diese nicht erklingt. Diesen „hinzugefügten“ Grundton bezeichnet man auch als ''[[Residualton]].''


== Musiktheorie und -didaktik ==
== Musiktheorie und -didaktik ==
Die Existenz von Obertönen wurde seit langer Zeit zu einer wissenschaftlichen Erklärung und Begründung von Tonsystemen der Musik herangezogen, wobei in der Regel von dem einfachen Modell ganzzahliger Frequenz- oder Saitenlängenverhältnisse ausgegangen wurde.
Die Existenz von Obertönen wurde seit langer Zeit zu einer wissenschaftlichen Erklärung und Begründung von Tonsystemen der Musik herangezogen, wobei in der Regel von dem einfachen Modell ganzzahliger Frequenz- oder Saitenlängenverhältnisse ausgegangen wurde.
* Die erste im Zusammenhang mit Obertönen stehende Theorie wird [[Pythagoras]] zugerechnet, dies war vor rund 2500 Jahren.  
* Die erste im Zusammenhang mit Obertönen stehende Theorie wird [[Pythagoras]] zugerechnet, dies war vor rund 2500 Jahren.
* Für [[Didaktik|didaktische]] Zwecke (Lehre der Begleitung, Generalbass, Harmonie und Melodie sowie Kompositionslehre) hat sich wohl als erster [[Johann Bernhard Logier]] (1777–1846) die Obertonreihe zu Nutze gemacht. Seine Lehre von den „harmonisch mitklingenden“ Tönen war zu seinen Lebzeiten stets umstritten; seine didaktisch hoch reflektierten Werke mit ihren einfachen, aufeinander aufbauenden Grundregeln dürfen jedoch als Anfang der modernen, noch heute gültigen Musiktheorie gelten. (Vgl. vor allem: J. B. Logier, System der Musik-Wissenschaft und der praktischen Composition mit Inbegriff dessen, was gewöhnlich unter dem Ausdrucke General-Bass verstanden wird, Berlin 1827. S. 11: Quintenzirkel, Generalbass: S. 15ff., ab S. 53 beginnt die Lehre der Obertöne.)
* Für [[Didaktik|didaktische]] Zwecke (Lehre der Begleitung, Generalbass, Harmonie und Melodie sowie Kompositionslehre) hat sich wohl als erster [[Johann Bernhard Logier]] (1777–1846) die Obertonreihe zunutze gemacht. Seine Lehre von den „harmonisch mitklingenden“ Tönen war zu seinen Lebzeiten stets umstritten; seine didaktisch hoch reflektierten Werke mit ihren einfachen, aufeinander aufbauenden Grundregeln dürfen jedoch als Anfang der modernen, noch heute gültigen Musiktheorie gelten.<ref>Vgl. vor allem: J. B. Logier: ''System der Musik-Wissenschaft und der praktischen Composition mit Inbegriff dessen, was gewöhnlich unter dem Ausdrucke General-Bass verstanden wird.'' Berlin 1827, S.&nbsp;11: Quintenzirkel, S.&nbsp;15&nbsp;ff. Generalbass, ab S.&nbsp;53 beginnt die Lehre der Obertöne.</ref>
* Einen der letzten Versuche zur Begründung eines theoretischen Systems aus der Obertonreihe und anderen akustischen Erscheinungen (z.&nbsp;B. [[Kombinationston|Kombinationstöne]]) findet man bei [[Paul Hindemith]] in seiner [[Unterweisung im Tonsatz]]. Auch Hindemiths System ist in der Fachwelt sehr umstritten. Reale Töne oder Klänge sind auch heute nur begrenzt mathematisch erfassbar, daher stößt jedes System irgendwann an seine Grenzen. Ein ästhetisches System ist daher nur schwer naturwissenschaftlich zu legitimieren.
* Einen der letzten Versuche zur Begründung eines theoretischen Systems aus der Obertonreihe und anderen akustischen Erscheinungen (z.&nbsp;B. [[Kombinationston|Kombinationstönen]]) findet man bei [[Paul Hindemith]] in seiner [[Unterweisung im Tonsatz]]. Auch Hindemiths System ist in der Fachwelt sehr umstritten. Reale Töne oder Klänge sind auch heute nur begrenzt mathematisch erfassbar, daher stößt jedes System irgendwann an seine Grenzen. Ein ästhetisches System ist daher nur schwer naturwissenschaftlich zu legitimieren.


== Untertonreihen ==
== Untertonreihen ==
Spiegelt man die harmonische Obertonreihe, entsteht die theoretische, zu ihr symmetrische harmonische [[Unterton]]reihe, die durch Frequenzteilung entsteht, nach unten hin ergänzt. In der Natur sind Untertöne höchst selten; sie treten manchmal bei Glocken und Gongs auf. Es ist nicht sicher, ob es sich tatsächlich um Töne einer Untertonreihe handelt. Praktisch werden sie beim [[Trautonium]], beim [[Subharchord]] und beim [[Untertongesang]] erzeugt.
Spiegelt man die harmonische Obertonreihe, entsteht die theoretische, zu ihr symmetrische harmonische [[Unterton]]reihe, die durch Frequenzteilung entsteht, nach unten hin ergänzt. In der Natur sind Untertöne höchst selten; sie treten manchmal bei Glocken und Gongs auf. Es ist nicht sicher, ob es sich tatsächlich um Töne einer Untertonreihe handelt. Praktisch werden sie beim [[Trautonium]], beim [[Subharchord]] und beim [[Untertongesang]] erzeugt.


Im Besonderen Hugo Riemann gebrauchte den Begriff der Untertonreihe häufig in seinen Lehrbüchern und musikwissenschaftlichen Traktaten, und legte sie in der "zwei-Wurzel-Theorie" (Dur/Moll Dualismus) als Grundlage seiner Funktionstheorie aus.
Im Besonderen Hugo Riemann gebrauchte den Begriff der Untertonreihe häufig in seinen Lehrbüchern und musikwissenschaftlichen Traktaten, und legte sie in der „Zwei-Wurzel-Theorie“ (Dur/Moll-Dualismus) als Grundlage seiner Funktionstheorie aus.


== Anmerkungen ==
== Anmerkungen ==
<references group="n">
<references group="n">
<ref name="verh">Bei den Bezeichnungen Teilton und Partialton wird die Grundfrequenz mitgezählt. Spricht man von Oberton, wird die Grundfrequenz nicht mitgezählt. Die Ordnungszahl eines Obertons ist also immer um eins kleiner als die Ordnungszahl eines Teiltons.</ref>
<ref name="verh">Bei den Bezeichnungen „Teilton“ und „Partialton“ wird die Grundfrequenz mitgezählt. Spricht man von „Oberton“, wird die Grundfrequenz nicht mitgezählt. Die Ordnungszahl eines Obertons ist also immer um eins kleiner als die Ordnungszahl eines Teiltons.</ref>
<ref name="Sinus">Reine Sinustöne können nur mit elektronischen Mitteln erzeugt werden. Mit Stimmgabeln oder Flöten jedoch können Schallereignisse hervorgebracht werden, die Sinustönen sehr nahekommen.<!--Erklärung sollte bei der Verlinkung Sinuston erfolgen--></ref>
<ref name="Sinus">Reine Sinustöne können nur mit elektronischen Mitteln erzeugt werden. Mit Stimmgabeln oder Flöten können aber Schallereignisse hervorgebracht werden, die Sinustönen sehr nahekommen.<!--Erklärung sollte bei der Verlinkung Sinuston erfolgen--></ref>
</references>
</references>


Zeile 257: Zeile 252:


== Literatur ==
== Literatur ==
* [[Hermann von Helmholtz]]: ''Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik''. Vieweg, Braunschweig 1863 ([http://reader.digitale-sammlungen.de/de/fs1/object/display/bsb10598685_00005.html online]).
* [[Hermann von Helmholtz]]: ''Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik.'' Vieweg, Braunschweig 1863, ([http://reader.digitale-sammlungen.de/de/fs1/object/display/bsb10598685_00005.html online]).
* Stichwort ''Obertöne''. In: {{Literatur | Herausgeber= Johannes Kunsemüller | Titel= Meyers Lexikon der Technik und exakten Naturwissenschaften | Auflage=  | Verlag= Bibliographisches Institut AG | Ort= Mannheim | Jahr= 1970 | ISBN= | Seiten=1844}}
* Stichwort ''Obertöne.'' In: {{Literatur |Herausgeber=Johannes Kunsemüller |Titel=Meyers Lexikon der Technik und exakten Naturwissenschaften |Verlag=Bibliographisches Institut AG |Ort=Mannheim |Datum=1970 |Seiten=1844}}
* Stichwort ''Teiltöne'': In: {{Literatur | Herausgeber=[[Willibald Gurlitt]], [[Hans Heinrich Eggebrecht]] | Titel=Riemann Musik Lexikon (Sachteil)| Auflage=| Verlag=B.&nbsp;Schott’s Söhne| Ort=Mainz| Jahr=1967| ISBN=| Seiten=942 f}}
* Stichwort ''Teiltöne.'' In: {{Literatur |Herausgeber=[[Willibald Gurlitt]], [[Hans Heinrich Eggebrecht]] |Titel=Riemann Musik Lexikon (Sachteil) |Verlag=B.&nbsp;Schott’s Söhne |Ort=Mainz |Datum=1967 |Seiten=942 f}}
* Stichwort ''Obertöne''. In: {{Literatur | Herausgeber=Marc Honegger, [[Günther Massenkeil]] | Titel= Das große Lexikon der Musik. Band 6 | Auflage= | Verlag=Herder | Ort=Freiburg im Breisgau | Jahr=1987 | ISBN=3-451-20948-9 | Seiten=82 ff}}
* Stichwort ''Obertöne.'' In: Marc Honegger, [[Günther Massenkeil]] (Hrsg.): ''Das große Lexikon der Musik.'' Band 6: ''Nabakov – Rampal.'' Aktualisierte Sonderausgabe. Herder, Freiburg im Breisgau u.&nbsp;a. 1987, ISBN 3-451-20948-9, S. 82 ff.
* John R. Pierce: ''Klang. Musik mit den Ohren der Physik''. Spektrum, Heidelberg/Berlin/Oxford 1999, ISBN 3-8274-0544-0.
* John R. Pierce: ''Klang. Musik mit den Ohren der Physik.'' Spektrum, Heidelberg/Berlin/Oxford 1999, ISBN 3-8274-0544-0.
* Markus Fritsch, Katrin Jandl, Peter Kellert, Andreas Lonardoni: ''Harmonielehre & Songwriting.'' LEU-Verlag, 8. Auflage 2020. ISBN 3-928825-23-2, S. 60


== Weblinks ==
== Weblinks ==
* [http://www.kettering.edu/~drussell/Demos/MembraneCircle/Circle.html Die Partialschwingungen einer Trommel in animierten Graphiken]
* [http://www.kettering.edu/~drussell/Demos/MembraneCircle/Circle.html Die Partialschwingungen einer Trommel in animierten Graphiken]
* [http://www.sengpielaudio.com/Harmonische-Partialtoene-Obertoene.pdf Harmonische, Partialtöne, Teiltöne und Obertöne] (PDF-Datei; 255 kB)
* [http://www.sengpielaudio.com/Harmonische-Partialtoene-Obertoene.pdf Harmonische, Partialtöne, Teiltöne und Obertöne] (PDF-Datei; 255&nbsp;kB)
* [http://www.sengpielaudio.com/DieTeiltondichte.pdf Die Teiltondichte und die Teiltonreihe] (PDF-Datei; 47 kB)
* [http://www.sengpielaudio.com/DieTeiltondichte.pdf Die Teiltondichte und die Teiltonreihe] (PDF-Datei; 47&nbsp;kB)
* [http://www.sengpielaudio.com/UnterscheideHarmonische.pdf Unterscheide Obertöne von Harmonischen, Partialtönen und Teiltönen] (PDF-Datei; 42 kB)
* [http://www.sengpielaudio.com/UnterscheideHarmonische.pdf Unterscheide Obertöne von Harmonischen, Partialtönen und Teiltönen] (PDF-Datei; 42&nbsp;kB)
* [http://www.lehrklaenge.de/html/frequenzverhaltnise.html Die Frequenzverhältnisse, die sich für Intervalle aus der Obertonreihe ergeben]
* [http://www.lehrklaenge.de/html/frequenzverhaltnise.html Die Frequenzverhältnisse, die sich für Intervalle aus der Obertonreihe ergeben]
* [http://www.stimmlabor.de/obertonleiter-naturtonreihe/ Hörproben der gesungenen Obertonreihe bzw. Naturtonreihe]
* [http://www.stimmlabor.de/obertonleiter-naturtonreihe/ Hörproben der gesungenen Obertonreihe bzw. Naturtonreihe]
Zeile 275: Zeile 271:
* [http://www.sengpielaudio.com/Rechner-harmonische.htm Obertöne, Harmonische und Teiltöne aus der Grundfrequenz]
* [http://www.sengpielaudio.com/Rechner-harmonische.htm Obertöne, Harmonische und Teiltöne aus der Grundfrequenz]
* [http://www.sackpfeyffer-zu-linden.de/Musik.html#02 Partialtöne und Klang]
* [http://www.sackpfeyffer-zu-linden.de/Musik.html#02 Partialtöne und Klang]
* [http://www.oberton.info/obertonbrevier.pdf Das kleine Obertonbrevier] (PDF-Datei; 1,52 MB)
* [http://www.oberton.info/obertonbrevier.pdf Das kleine Obertonbrevier] (PDF-Datei; 1,5&nbsp;MB)
* [http://www.lehrklaenge.de/html/entstehung_der_obertone.html Wie die Obertöne entstehen]
* [http://www.lehrklaenge.de/html/entstehung_der_obertone.html Wie die Obertöne entstehen]


== Einzelnachweise ==
== Einzelnachweise ==
<references />
<references />
{{Normdaten|TYP=s|GND=4338470-5}}


[[Kategorie:Ton]]
[[Kategorie:Ton]]

Aktuelle Version vom 1. Dezember 2021, 12:42 Uhr

Obertöne (auch Partial-, Teil-, Aliquot-, Neben- oder Beitöne)[1] sind die neben dem Grundton mitklingenden Bestandteile eines musikalisch instrumental oder vokal erzeugten Tones.

Ein solcher ist jedoch im akustischen Sinne kein einzelner Ton (Sinuston),[n 1] sondern ein Klang oder Tongemisch, also ein Schallereignis, das sich vorrangig aus mehreren sinusförmigen Teiltönen von unterschiedlicher Amplitude zusammensetzt. Der tiefste Teilton wird Grundton genannt und bestimmt in der Regel die wahrgenommene Tonhöhe. Die höheren Teiltöne, die Obertöne, erzeugen die Klangfarbe.[n 2]

Bei fast allen natürlichen Musikinstrumenten (mit Ausnahme der Schlaginstrumente) sind die Frequenzen der Obertöne normalerweise ganzzahlige Vielfache der Grundfrequenz. Das bedeutet, dass einem Grundton mit der angenommenen Frequenz von 100 Hz Obertöne mit Frequenzen von 200 Hz, 300 Hz, 400 Hz, 500 Hz, 600 Hz … beigefügt sind. Derartige Teiltöne bezeichnet man auch als Harmonische.

Als Unharmonische bezeichnet man solche Teiltöne, die aus dieser mathematischen Folge herausfallen, (z. B. bei Röhren, Stäben, Platten oder Glocken). Sie entstehen durch Schwingungen, deren Frequenzen keine ganzzahligen Verhältnisse zur wahrgenommenen Grundfrequenz haben. Dadurch wird das Erkennen einer bestimmten Tonhöhe erschwert oder der Ton als unsauber oder misstönend empfunden.

Obertöne sind als Teiltöne Bestandteile eines Gesamtklanges, der durch Eigenschwingungen eines schwingungsfähigen Mediums entsteht. Bei den begrifflich verwandten Naturtönen von Blasinstrumenten werden durch sogenanntes Überblasen einzelne Oberschwingungen so stark angeregt, dass sie direkt als klingende Töne wahrgenommen werden, die ihrerseits weitere Obertöne erzeugen. Gleiches gilt für die Flageoletttöne bei Saiteninstrumenten.

Je nach Schallquelle ist das Klangspektrum ganz spezifisch zusammengesetzt. Daher ist für die charakteristische Klangfarbe von Musikinstrumenten sowie von Menschen- und Tierstimmen neben Rauschanteilen und Faktoren im zeitlichen Verlauf des Signals vor allem der Obertongehalt verantwortlich. Stimm- und instrumententypische Frequenzbereiche, in denen die Obertöne durch Resonanz besonders verstärkt werden und daher vorrangig für die Klangfarbe ausschlaggebend sind, heißen Formanten.

Harmonische

Als Harmonische bezeichnet man die Teiltöne eines harmonischen Klangs, also dessen Grundton und die Obertöne, deren Schwingungszahlen ganzzahlige Vielfache der Frequenz des Grundtons sind. In der folgenden Abbildung stellt die große Sinuswelle links den Grundton dar; im Bild rechts daneben überlagern harmonische Obertöne in Form schmalerer Sinuswellen die große Welle.

Reine Sinusschwingung


Schwingung mit Obertönen


Der 4. Oberton cis4 allein

Der Grundton A1 (55 Hz) und ab der 4. Sekunde die darauf aufbauende Obertonreihe bis einschließlich a3 (1.760 Hz)

Hörbeispiel: Aufbau eines harmonischen Klangs aus Sinustönen

Im nebenstehenden Hörbeispiel wird ein harmonischer Klang sukzessive aus seinen elektronisch erzeugten sinusförmigen Teiltönen aufgebaut. Die subjektiv wahrgenommene Lautstärkezunahme des 4. Oberton, bei objektiv gleichen Dezibel, ist auf die Hörschwelle zurückzuführen.

Harmonische Schwingungen stehen immer in Beziehung zur Grundfrequenz. Wie genau diese Beziehung beschrieben wird, hängt vom gewählten mathematischen Modell ab. Die Wahl der Grundfrequenz ist objektiv schwierig und wird in Bezug auf Musik in erster Linie vom empfundenen oder notierten Grundton bestimmt. Bei der Analyse oder Synthese von Schallereignissen kann aus akustischer oder messtechnischer Sicht die Grundfrequenz auch anders gewählt werden. Grundton und Obertöne müssen daher immer im Kontext verstanden werden.

In vielen Fällen reicht jedoch ein einfaches Beschreibungsmodell, das die Frequenzen der Oberschwingungen als ganzzahlige Vielfache einer als Ton wahrgenommenen Grundfrequenz annimmt.

Erläuterungsbeispiel: Kammerton a1 und die ersten fünf Harmonischen

Diese Tabelle zeigt den Kammerton a1 als Grundton und seine ersten vier Obertöne mit ihrer jeweiligen Ordnung n und ihren Frequenzen. Die n. Harmonische hat allgemein die Frequenz n·f.

Harmonische Reihe
Frequenz f = 440 Hz f = 880 Hz f = 1320 Hz f = 1760 Hz f = 2200 Hz
Notenbezeichnung a1 a2 e3 a3 cis4
Ordnung n = 1 n = 2 n = 3 n = 4 n = 5
Grundfrequenz 1. Oberton 2. Oberton 3. Oberton 4. Oberton
1. Teilton 2. Teilton 3. Teilton 4. Teilton 5. Teilton
1. Harmonische 2. Harmonische 3. Harmonische 4. Harmonische 5. Harmonische[n 2]

Man sieht hier: Das Intervall [a2 e3] ist eine Quinte mit dem Frequenzverhältnis f/f = 3/2 und das Intervall [a3 cis4] ist eine große Terz mit dem Frequenzverhältnis f/f = 5/4.

Das einfache harmonische Modell – Obertonreihe

Harmonische Teilschwingungen einer idealisierten Saite

Bereits seit der Antike gewinnt man Erkenntnisse zu Obertönen am Beispiel schwingender Saiten. Dabei wird angenommen, dass eine auf die Hälfte verkürzte Saite einen Ton mit der doppelten Schwingungszahl liefert, eine auf ein Drittel reduzierte Saite die dreifache Schwingungszahl ergibt usw. Für die musikalische Praxis, etwa das Überblasen von Blasinstrumenten, das Spielen von Flageoletttönen auf Saiteninstrumenten, den Obertongesang oder die Orgelregistrierung, ist dieses einfache Modell in der Regel ausreichend. Bei der Anwendung auf andere Klangquellen, wie z. B. stark gespannte Klaviersaiten, stößt dieses Modell jedoch an seine Grenzen.

Die nebenstehende Abbildung stellt (in willkürlicher Beschränkung auf die ersten sieben) die Eigenschwingungen einer Saite dar. Unter bestimmten Bedingungen kann die Saite jede dieser Eigenschwingungen separat (Flageoletttöne) ausführen, in der Regel werden jedoch alle oder zumindest mehrere dieser Eigenschwingungen gleichzeitig angeregt, sodass die resultierende Schwingung aus einer komplexen Überlagerung dieser Teilschwingungen besteht.

Das menschliche Gehör nimmt periodische Schwingungen als Töne (im Sinne von musikalischen Tönen) wahr, wobei die Schwingungsperiode die wahrgenommene Tonhöhe bestimmt. Analysiert man das Amplitudenspektrum eines Audiosignals einer annähernd periodischen Schwingung z. B. mit Hilfe der Kurzzeit-Fourier-Transformation, so besteht dieses aus

  • einem Grundton, der der Schwingungsperiode entspricht
  • und den harmonischen Obertönen mit Frequenzen, die ganzzahlige Vielfache der Grundfrequenz sind.

Listet man die Teiltöne im Sinne zunehmender Frequenz auf, so erhält man die Teil- bzw. Obertonreihe:

Die Obertonreihe

Im Folgenden sind beispielhaft die ersten sechzehn auf den Grundton C bezogenen Teiltöne dargestellt. Diese Beschränkung ist aus Gründen der Überschaubarkeit willkürlich gewählt. Theoretisch setzt sich die Teiltonreihe nach oben mit immer kleiner werdenden Abständen bis ins Unendliche fort.

Als Notenbeispiel

Bei notenmäßiger Darstellung der Teiltöne ist zu berücksichtigen, dass wegen der nach oben kontinuierlich abnehmenden Tonabstände eine exakte Wiedergabe in Notenschrift (zumindest im höheren Bereich der Teiltonreihe) nur annähernd (und schließlich gar nicht mehr) möglich ist. Auch stimmen nicht alle Obertöne mit den Tonstufen der gängigen Stimmungssysteme überein. Im folgenden Notenbeispiel werden die Obertöne mit den Tönen der gleichstufigen Stimmung verglichen. Die Abweichungen nach oben oder unten sind jeweils in Cent angegeben.

Obertonreihe.jpg

Während bei der gleichstufigen Stimmung außer dem Grundton und dessen Oktaven kein Ton exakt mit der Teiltonreihe übereinstimmt, gibt es keine Abweichungen bei reiner Stimmung bei allen Teiltönen außer Nr. 7 (Naturseptime), Nr. 11 (Alphorn-Fa), Nr. 13, Nr. 14 (Oktave der Naturseptime) und Nr. 15.

Als Tabelle

Die in der Tabelle verwendeten Farben orientieren sich an der Musik-Farben-Synästhesie.

Einfaches Modell – Vergleich mit Grundton
Grundton – Oberton Nr: Grundton 1 2 3 4 5 6 7 8 09 10 11 12 13 14 15
Teilton Nr: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Vielfaches der Grundfrequenz: einfache doppelte dreifache vierfache fünffache sechsf. siebenf. achtf. neunf. zehnfache elffache zwölffache dreizehnf. vierzehnf. fünfzehnf. sechzehnf.
Beispiel f in Hz: 66[T 1] 132 198 264 330 396 462 528 594 660 726 792 858 924 990 1056
Note: Bass C 2.svg Bass c-2.svg Bass g-2.svg Violin c1-2.svg Violin e1-2.svg Violin g1-2.svg Violin b1-2.svg Violin c2-2.svg Violin d2-2.svg Violin e2-2.svg Violin Fa-2.svg Violin g2-2.svg Violin as2-2.svg Violin b2-2.svg Violin h2-2.svg Violin c3-2.svg
Tonname: C c g c1 e1 g1 ≈ b1[T 2] c2 d2 e2 ≈ f2[T 3] g2 ≈ as2[T 4] ≈ b2[T 5] h2 c3
Verhältnis zum Ton darunter: 1:1 2:1 3:2 4:3 5:4 6:5 7:6 8:7 9:8 10:9 11:10 12:11 13:12 14:13 15:14 16:15
Intervall zum Ton darunter: Prime Oktave[T 6] reine Quinte reine Quarte große Terz kleine Terz großer Ganzton kleiner Ganzton diatonischer Halbton

Tabellenfußnoten

  1. Eine kleine Terz (Frequenzverhältnis 65) über dem Kammerton a′ mit 440 Hz liegt der Ton c2 mit 528 Hz. Das drei Oktaven tiefer liegende C hat demnach die Frequenz von 66 Hz.
  2. 7. Oberton = 462 Hz (Naturseptime). Abweichung von b1 = 475,2 Hz der reinen Stimmung ≈ 49 Cent. Hinweis: Vor allem für die Darstellung der feinen Größenunterschiede der Intervalle verwendet man die Einheit Cent, wobei ein gleichstufiger Halbton 100 Cent und eine Oktave 1200 Cent entsprechen. Die Berechnung erfolgt über den Logarithmus des Frequenzverhältnisses zur Basis 2. Hier 1200 log2 (475,2/462) ≈ 49 Cent.
  3. 11. Oberton = 726 Hz (Alphorn-Fa). Abweichung von f2 = 704 Hz bzw. fis2 = 742,5 Hz der reinen Stimmung ≈ 53 Cent bzw. 39 Cent.
  4. 13. Oberton = 858 Hz. Abweichung von as2 = 844,8 Hz der reinen Stimmung ≈ 27 Cent.
  5. 14. Oberton = 924 Hz (Naturseptime). Abweichung von b2 = 950,4 Hz der reinen Stimmung ≈ 49 Cent.
  6. Das musikalische Intervall einer Oktave entspricht einer Verdopplung der Frequenz.

Aus der letzten Zeile der Tabelle wird ersichtlich, dass sich alle Intervalle der diatonischen Tonleiter (siehe reine Stimmung) aus der Obertonreihe herleiten lassen. Insbesondere: Halbton (Frequenzverhältnis 1615), großer und kleiner Ganzton (98 und 109), kleine Terz (65), große Terz (54), Quart (43), Quint (32) und Oktave (21).

Grenzen des einfachen Modells

Bei vielen Musikinstrumenten oder bei Vokalen der menschlichen Stimme besteht ein wesentlicher Teil des Klangs aus periodischen Schwingungen, die sich mit der vereinfachten Modellvorstellung von Grundton und harmonischen Obertönen in guter Näherung beschreiben lassen, so beispielsweise bei schwingenden Saiten von Saiteninstrumenten (Chordophonen) oder schwingenden Luftsäulen von Blasinstrumenten (Aerophonen). Jedoch treten dabei in der Realität mehr oder weniger starke Abweichungen von der theoretischen Ganzzahligkeit der Obertöne auf.

Inharmonizität

Abweichungen von den harmonischen Verhältnissen der Teiltöne treten bei vielen Instrumenten auf. Diese unter dem Begriff Inharmonizität bekannten Abweichungen werden zum Beispiel beim Klavier im Wesentlichen durch das Biegemoment der Saite hervorgerufen.[2] Besonders die dicken Basssaiten sind hiervon betroffen. Höhere Obertöne sind stärker betroffen als niedrigere.[2] Die genauere Analyse derartiger Obertöne ist aufwändiger und erfordert zur Beschreibung komplexere Modelle als die Analyse und Beschreibung von „sehr harmonischen“ Tönen. (Siehe auch Audiosignal.)

Geräuschanteile

Außerdem treten auch nicht-periodische Schwingungen auf, die ein eher breitbandiges Frequenzspektrum besitzen und sich nicht durch Grundton und harmonische Obertöne beschreiben lassen, z. B. Anschlaggeräusche bei Saiteninstrumenten, Anblasgeräusche bei Blasinstrumenten und Orgelpfeifen sowie Konsonanten bei der menschlichen Stimme. Die Analyse dieser Klangkomponenten erfordert moderne elektronische Messtechnik und mathematische Modelle, deren Lösungen nur mit leistungsfähigen Computern berechenbar sind.

Unschärfe

Mathematisch sind Schwingungen nur dann sinusförmig, wenn sie sowohl schon unendlich lange andauern als auch noch unendlich lange andauern werden. Schwingungen sind in der Praxis immer nur quasiperiodisch oder fastperiodisch.[3] Die Sinusfunktion erstreckt sich beidseitig in die Unendlichkeit und ein Abschneiden der Dauer führt mathematisch zu etwas anderem, einer zeitlich begrenzten Welle. In psychoakustischer Konsequenz ergeben sich beim Abschneiden von langandauernden kontinuierlichen, statischen Sinustönen oder Sinustongemischen breitbandige Artefakte.[4]

Bei kurzandauernden Vorgängen solcher Art – wie sie bei allen Instrumenten auftreten, bei denen nicht stets Energie nachgereicht wird, also vor allem bei den Zupf- und Schlaginstrumenten (auch beim Klavier) – ist die Grundvoraussetzung des Dauertones nicht einmal näherungsweise erfüllt.

In der Kultur der Ingenieurwissenschaften ging man meistens von der Situation aus, dass Vorgänge langandauernd und langsam veränderlich sind (bei der Modulation eines Radiosenders ist dies der Fall). Nur dann ergeben die Fouriertransformation und die daraus implizit im Artikel folgenden Begriffe einen Sinn. Erst um die Wende zum 21. Jhdt. hat sich die Einsicht durchgesetzt, dass bei schnell veränderlichen und kurz andauernden Vorgängen die Wavelet-Transformation Anwendung finden muss, worauf Begriffe wie etwa „Frequenz“ neu gedeutet werden müssen. Zur Grundtonerkennung sind seitdem eine Vielfalt verschiedener Methoden in Verwendung.[5]

Musik beinhaltet wesentlich solche Vorgänge. Insofern ist auch aus dieser Sicht Kritik an überkommenen Vorstellungen zu üben. Zu sehr sind unsere Vorstellungen von den für die Elektronik in weiten Bereichen vollständig ausreichenden heute verbreiteten Modellen geprägt. Dass man sich der komplexen Zusammenhänge bereits bewusst war, bevor Hermann von Helmholtz eine mathematische Theorie zur Erklärung der Klangfarbe durch Obertöne in Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik (1863) veröffentlichte, zeigt ein Auszug aus Zamminers Die Musik und die musikalischen Instrumente von 1885: „Alle tönenden Körper, welches ihre Substanz, ihre Gestalt, ihr Elasticitäts- und Spannungszustand sein möge, sind außer den Schwingungen in ganzer Masse, welche den Grundton geben, noch unendlich vieler Abtheilungsarten und eben so vieler Obertöne fähig. Die Schwingungszustände, welche sie anzunehmen vermögen, sind um so mannichfaltiger, je weniger einfach ihre Form ist. Nur cylindrische und prismatische Luftsäulen und ähnlich wie diese schwingende Stäbe von geringem Durchmesser haben eine so einfache harmonische Oberreihe wie die gespannten Saiten; weit reicher schon ist die Menge der Obertöne bei Körpern, welche, wie Platten und gespannte Häute, sich in ebener oder gekrümmter Fläche ausbreiten, am Mannichfaltigsten die von beliebig in jedem Sinne ausgedehnten festen Massen und Lufträumen.“[6]

Obertöne und Klangfarbe

Obertöne der menschlichen Stimme

In der menschlichen Stimme schwingt, genau wie in den meisten klangerzeugenden physikalischen Systemen, ein komplexes Obertonspektrum mit. In der besonderen Gesangstechnik des Obertongesangs kann man diese hohen Frequenzen zum Dominieren bringen.

Der unterschiedliche Klang von Vokalen kommt durch deren spezifischen Obertonaufbau zustande. Durch die individuelle Größe und Form von Mund und Rachen werden manche Frequenzen durch Resonanz verstärkt, andere gedämpft. Die Frequenzbereiche, die jeweils verstärkt werden, nennt man auch Formanten.

Obertöne unterschiedlicher Instrumente

Wellen in offenen und gedackten Röhren. Die Wellenknoten sind blau.

Der spezifische Klang eines Instrumentes ergibt sich aus den Antworten auf folgende Fragen:

  • Welche Obertöne sind überhaupt vorhanden?
  • Wie laut sind diese Obertöne im Verhältnis zueinander?
  • Wie ändern sich die Lautstärke und Frequenz der einzelnen Obertöne, während der Ton erklingt?
  • Welche Nebengeräusche (Anschlaggeräusche, Blasgeräusche …) kommen hinzu?

Folgende Instrumente haben einen besonders charakteristischen Teiltonaufbau:

  • Streichinstrumente besitzen ein sehr reichhaltiges Teiltonspektrum.
  • Klarinetten betonen die Lautstärke der ungeraden Teiltöne.
  • Beim Fagott ist der Grundton sehr viel schwächer als die ersten Obertöne.
  • Glocken betonen oftmals die Terzen sehr stark und die Obertonzusammensetzung ist komplex.
  • Stimmgabeln erzeugen fast nur den Grundton.

Bei Instrumenten mit einfachen Obertonzusammensetzungen sind die Frequenzen der Obertöne annähernd ganzzahlige Vielfache der Frequenz des Grundtons. Hierzu gehören die Chordophone (Saiteninstrumente) und die Aerophone mit schwingender Luftsäule. Das ist natürlich auch nur eine idealisierte Annahme; so besteht bei wirklichen (nicht unendlich dünnen) Saiten eine Inharmonizität. Gerade die sehr geringen Abweichungen von den idealen Harmonischen machen den Klang eines einzelnen Instrumentes unverwechselbar und lebendig.

Bei den meisten Holzblasinstrumenten ist das sehr nahe der idealisierte Annahme, auch für viele Saiteninstrumente stimmt dies recht gut. Beim Klavier allerdings ist das ganzzahlige Frequenzverhältnis nur annähernd erfüllt. Besonders die sehr hohen Obertöne liegen schon recht weit neben den Frequenzen mit ganzzahligen Verhältnissen zum Grundton. Je höher man die Leiter der Obertöne emporsteigt, desto mehr weichen deren Frequenzen von den genau harmonischen ab. Es hat sich sogar herausgestellt, dass die dem Klavier eigene Klangfarbe sehr wesentlich mit dieser Abweichung von den genau harmonischen Obertönen zusammenhängt. Z. B. hören sich Imitationen eines Klaviers nicht besonders klavierähnlich an, wenn diese Abweichung der Obertonreihe bei der künstlichen Erzeugung des Tones nicht mitberücksichtigt wird.

Die Eigenfrequenzen und deren harmonische Obertöne hängen vom jeweiligen Klangerzeuger ab und werden durch die Abmessungen und Beschaffenheit des Körpers bestimmt. Es gibt Instrumente, bei denen sich die Obertonzusammensetzungen relativ einfach beschreiben lassen, und andere, die sehr komplexe Beschreibungsmodelle erfordern. Bei Instrumenten mit komplexen Obertonzusammensetzungen stehen viele Frequenzen der Obertöne in komplizierten nichtganzzahligen Verhältnissen zueinander. Die Obertöne der Membranophone mit runder Membran haben die Eigenfrequenzen einer Besselschen Differentialgleichung. Bei Idiophonen können sich je nach der Form des Klangkörpers ganz unterschiedliche Obertonreihen ergeben – bei den Stabspielen etwa sind es die Eigenfrequenzen der Biegeschwingung eines Balkens.

Künstlich aus Sinustönen hergestellte Obertonspektren nennt man synthetische Klänge (siehe Klangsynthese, Synthesizer). Eine reine Sägezahnschwingung zeichnet sich dadurch aus, dass sie zum Grundton alle seine Obertöne enthält, weshalb man sie zu den Zeiten der analog-elektronischen Musikinstrumente bevorzugt als Ausgangsschwingung einsetzte.

Wirkung der Obertöne: Brillanz und Dumpfheit

Der Anteil der Obertöne am Gesamtspektrum und die daraus resultierende Klangfarbe kann durch Worte wie Brillanz, Schärfe, Reinheit, Dumpfheit u. a. beschrieben werden.

Im Allgemeinen klingen Töne umso brillanter (Violine), schärfer (Trompete) oder farbiger (Oboe, Fagott), je mehr Obertöne sie haben, und umso reiner und klarer (Flöte) bzw. blasser oder dumpfer (tiefe Klarinette, gedeckte Orgelregister), je weniger sie haben.

Reine Töne ohne Obertöne, also Sinustöne, können praktisch gar nicht erzeugt werden. Näherungsweise können sie auf mechanischem Wege nur mit sehr geringen Schallpegeln erzeugt werden (Stimmgabel oder Hohlraumresonatoren, sehr sanft angeregt). Elektronisch ist die Erzeugung näherungsweise reiner Sinustöne problemlos möglich. Sie klingen bei tieferer Frequenz dumpf, breit und strömend, bestimmte Orgelregister kommen dem nahe. Bei höheren Frequenzen wird der Unterschied zu Klängen mit Obertönen geringer, weil diese Obertöne außerhalb des Hörbereichs liegen. Ein Beispiel der Situation für mittlere Frequenzen ist der 1000-Hertz-Ton des Fernsehtestbilds, wobei der Lautsprecher jedoch durch seine Verzerrungen schon wieder sein eigenes Obertonspektrum hinzufügt. Da die gesamte Energie nur in einem schmalen Frequenzbereich auftritt, können pegelstarke Sinustöne sehr unangenehm sein. Überhaupt sind Sinustöne ein Prüfstein für jeden Lautsprecher, da die Gefahr von elektrischer und mechanischer Überlastung einerseits sehr hoch ist, andererseits Verzerrungsprodukte mit hörbaren Pegeln sofort auffallen und mechanische Konstruktionsprobleme mit bisweilen schnarrenden oder fauchenden Resonanzen offengelegt werden.

In einem Mehrweg-Lautsprecher (Elektroakustik) ist in erster Linie der Hochtöner für die Brillanz, also für die Klanghelligkeit und die Klangfarbe der Wiedergabe, zuständig.

Höhere Obertöne sind bei mechanischen Musikinstrumenten in der Regel leiser (pegelschwächer) als tiefere:

  • Zum einen werden bei mechanischen Tonerzeugern höhere Frequenzen nur wesentlich schwächer angeregt als tiefere (z. B. nimmt bei einer schwingenden Saite die Schwingungsamplitude der Obertöne mit steigender Frequenz ab).
  • Zum anderen werden höhere Frequenzen in der Luft stärker gedämpft. Daher ist bei einer Beschallung über große Flächen die Brillanz der Wiedergabe meistens relativ schlecht.

Hörbarkeit von Obertönen

In der Regel werden Obertöne nicht einzeln wahrgenommen, sondern ergeben den Klang eines Tons. In bestimmten Fällen oder unter besonderen Bedingungen können sie aber auch einzeln gehört oder hörbar gemacht werden.

  • Manche Menschen sind in der Lage, aus einem Klang einzelne Obertöne auch ohne jegliche Hilfe selektiv herauszuhören. Dieses gilt besonders bei sehr stabilen Tönen wie beispielsweise bei lang ausgehaltenen Tönen von Orgelpfeifen.
  • Die Gesangstechnik des Obertonsingens macht die Obertöne deutlich wahrnehmbar. Beispiele sind der Obertongesang mongolischer und tuvinischer Völker. Auch in der westlichen Musik gibt es seit Ende der 1960er Jahre wieder eine Belebung der Obertonkultur.
  • Auch im instrumentalen Bereich kann man Obertöne deutlich hörbar machen. Typische Instrumente hierfür sind z. B. das Didgeridoo, die Fujara oder Klangschalen.
  • Bei Saiteninstrumenten können Töne in der Tonhöhe von Obertönen durch Flageolett-Spielweise (siehe Flageolettton) erzeugt werden. Dabei wird die Saite mit der Greifhand nur leicht berührt anstatt sie auf das Griffbrett zu drücken. Allerdings erklingt dann meist ein anderer Ton als bei normalem Greifen.
  • Auf dem Klavier kann man Obertöne auf drei Arten hörbar machen:
    1. Indem man die Tasten eines Akkords aus der Obertonreihe sanft niederdrückt, ohne dass die Hämmer die Saite berühren, und dann den Grundton im Bassbereich kurz und stark anschlägt. Die Obertöne erzeugen nun eine Resonanz auf den ungedämpften Saiten der niedergedrückt gehaltenen Tasten, die man deutlich hören kann.
    2. Indem man eine Taste im Bassbereich auf die beschriebene Weise stumm niederdrückt und dann einen oder mehrere Töne aus der zugehörigen Obertonreihe kurz und kräftig anschlägt. Durch Resonanz wird die ungedämpfte Basssaite angeregt, mit den Frequenzen dieser Obertöne zu schwingen. Die angeschlagenen Töne klingen echoartig weiter, obwohl die zugehörigen Saiten abgedämpft wurden.
    3. Auch am Klavier kann man einen Flageolettton erzeugen. Dafür drückt man leicht auf den erforderlichen Punkt auf einer Saite und schlägt mit der anderen Hand die entsprechende Taste an. Das Gleiche funktioniert auch mittels Präparierung der Saite, das beste Material dafür ist Gummi.
Insbesondere der erste Effekt wird auch von Komponisten in ihren Werken verwendet (z. B. Béla Bartók: Mikrokosmos, Band IV).

Anwendungen

Die Orgel und ihre Register

Besonders wichtig ist die harmonische Obertonreihe bei der Orgel. Durch verschiedene Orgelregister, die jeweils einzelne bis auf wenige Ausnahmen harmonische Obertöne erzeugen (Aliquoten), lassen sich Klangfarben durch eine einfache Art additiver Synthese erzeugen. Bei Pfeifenorgeln ist nur ein „an“ oder „aus“ der Register möglich. Die am meisten verwendeten harmonischen Obertöne sind dabei Oktaven (2., 4., 8., 16., … Partialton), Quinten (3., 6., 12., … Partialton) und große Terzen (5., 10., … Partialton), in modernen Orgeln auch die kleine Septime (7., 14., … Partialton) und die große None (9., 18., … Partialton).

Eine davon inspirierte Klangsynthese findet bei der Hammond-Orgel statt. Hierbei lassen sich die Anteile der Teiltöne durch Schieberegler zusätzlich variieren.

Residualtöne

Das menschliche Hörzentrum ist in der Lage, zu einem (auch nur teilweise) erklingenden Obertonspektrum die Grundfrequenz wahrzunehmen, auch wenn diese nicht erklingt. Diesen „hinzugefügten“ Grundton bezeichnet man auch als Residualton.

Musiktheorie und -didaktik

Die Existenz von Obertönen wurde seit langer Zeit zu einer wissenschaftlichen Erklärung und Begründung von Tonsystemen der Musik herangezogen, wobei in der Regel von dem einfachen Modell ganzzahliger Frequenz- oder Saitenlängenverhältnisse ausgegangen wurde.

  • Die erste im Zusammenhang mit Obertönen stehende Theorie wird Pythagoras zugerechnet, dies war vor rund 2500 Jahren.
  • Für didaktische Zwecke (Lehre der Begleitung, Generalbass, Harmonie und Melodie sowie Kompositionslehre) hat sich wohl als erster Johann Bernhard Logier (1777–1846) die Obertonreihe zunutze gemacht. Seine Lehre von den „harmonisch mitklingenden“ Tönen war zu seinen Lebzeiten stets umstritten; seine didaktisch hoch reflektierten Werke mit ihren einfachen, aufeinander aufbauenden Grundregeln dürfen jedoch als Anfang der modernen, noch heute gültigen Musiktheorie gelten.[7]
  • Einen der letzten Versuche zur Begründung eines theoretischen Systems aus der Obertonreihe und anderen akustischen Erscheinungen (z. B. Kombinationstönen) findet man bei Paul Hindemith in seiner Unterweisung im Tonsatz. Auch Hindemiths System ist in der Fachwelt sehr umstritten. Reale Töne oder Klänge sind auch heute nur begrenzt mathematisch erfassbar, daher stößt jedes System irgendwann an seine Grenzen. Ein ästhetisches System ist daher nur schwer naturwissenschaftlich zu legitimieren.

Untertonreihen

Spiegelt man die harmonische Obertonreihe, entsteht die theoretische, zu ihr symmetrische harmonische Untertonreihe, die durch Frequenzteilung entsteht, nach unten hin ergänzt. In der Natur sind Untertöne höchst selten; sie treten manchmal bei Glocken und Gongs auf. Es ist nicht sicher, ob es sich tatsächlich um Töne einer Untertonreihe handelt. Praktisch werden sie beim Trautonium, beim Subharchord und beim Untertongesang erzeugt.

Im Besonderen Hugo Riemann gebrauchte den Begriff der Untertonreihe häufig in seinen Lehrbüchern und musikwissenschaftlichen Traktaten, und legte sie in der „Zwei-Wurzel-Theorie“ (Dur/Moll-Dualismus) als Grundlage seiner Funktionstheorie aus.

Anmerkungen

  1. Reine Sinustöne können nur mit elektronischen Mitteln erzeugt werden. Mit Stimmgabeln oder Flöten können aber Schallereignisse hervorgebracht werden, die Sinustönen sehr nahekommen.
  2. 2,0 2,1 Bei den Bezeichnungen „Teilton“ und „Partialton“ wird die Grundfrequenz mitgezählt. Spricht man von „Oberton“, wird die Grundfrequenz nicht mitgezählt. Die Ordnungszahl eines Obertons ist also immer um eins kleiner als die Ordnungszahl eines Teiltons.

Siehe auch

  • Naturtonreihe
  • Vokaldreieck, Vokaltrapez, Flageolettton, Obertongesang
  • Psychoakustik, Differenzton
  • Stimmung (Musik)
  • Fourieranalyse, Schwingung, Rechteckschwingung, Kippschwingung
  • Liste von Audio-Fachbegriffen

Literatur

  • Hermann von Helmholtz: Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik. Vieweg, Braunschweig 1863, (online).
  • Stichwort Obertöne. In: Johannes Kunsemüller (Hrsg.): Meyers Lexikon der Technik und exakten Naturwissenschaften. Bibliographisches Institut AG, Mannheim 1970, S. 1844.
  • Stichwort Teiltöne. In: Willibald Gurlitt, Hans Heinrich Eggebrecht (Hrsg.): Riemann Musik Lexikon (Sachteil). B. Schott’s Söhne, Mainz 1967, S. 942 f.
  • Stichwort Obertöne. In: Marc Honegger, Günther Massenkeil (Hrsg.): Das große Lexikon der Musik. Band 6: Nabakov – Rampal. Aktualisierte Sonderausgabe. Herder, Freiburg im Breisgau u. a. 1987, ISBN 3-451-20948-9, S. 82 ff.
  • John R. Pierce: Klang. Musik mit den Ohren der Physik. Spektrum, Heidelberg/Berlin/Oxford 1999, ISBN 3-8274-0544-0.
  • Markus Fritsch, Katrin Jandl, Peter Kellert, Andreas Lonardoni: Harmonielehre & Songwriting. LEU-Verlag, 8. Auflage 2020. ISBN 3-928825-23-2, S. 60

Weblinks

Einzelnachweise

  1. Eintrag in Meyers Großem Konversations-Lexikon von 1905.
  2. 2,0 2,1 Sam Howison: Practical Applied Mathematics. Modeling, Analysis, Approximation. 2005, ISBN 0-521-60369-2, Kapitel 15.3, Seite 209 ff.
  3. Martin Neukom: Signale, Systeme und Klangsynthese. Grundlagen der Computermusik. Band 2 von Zürcher Musikstudien. 2005, ISBN 3-03910-819-0, Seite 56, online.
  4. Ulrich Karrenberg: Signale – Prozesse – Systeme. Eine multimediale und interaktive Einführung in die Signalverarbeitung. 2009, ISBN 3-642-01863-7, Seite 84, online.
  5. Johann-Markus Batke: Untersuchung von Melodiesuchsystemen sowie von Verfahren zu ihrer Funktionsprüfung. 2006, ISBN 3-86727-085-6, Seite 71, online.
  6. Friedrich Georg Karl Zamminer: Die Musik und die musikalischen Instrumente in ihrer Beziehung zu den Gesetzen der Akustik. 1855, Seite 176, online.
  7. Vgl. vor allem: J. B. Logier: System der Musik-Wissenschaft und der praktischen Composition mit Inbegriff dessen, was gewöhnlich unter dem Ausdrucke General-Bass verstanden wird. Berlin 1827, S. 11: Quintenzirkel, S. 15 ff. Generalbass, ab S. 53 beginnt die Lehre der Obertöne.