Quantenverschränkung: Unterschied zwischen den Versionen

Quantenverschränkung: Unterschied zwischen den Versionen

imported>Mfb
(→‎Geschichte: mehr Einzelnachweise, s. Disk)
 
imported>Crazy1880
K (Vorlagen-fix (arXiv))
 
Zeile 1: Zeile 1:
{{QS-Physik|Unerledigt=2013}}
Von '''Verschränkung''' spricht man in der [[Quantenphysik]], wenn ein zusammengesetztes physikalisches System, z. B. ein System mit mehreren Teilchen, als Ganzes betrachtet einen wohldefinierten [[Zustand (Physik)|Zustand]] einnimmt, ohne dass man auch jedem der Teilsysteme einen eigenen wohldefinierten Zustand zuordnen kann.


Das [[quantenphysik]]alische [[Phänomen]] der '''Verschränkung''' (selten '''Quantenkorrelation''') liegt vor, wenn der [[Zustand (Quantenmechanik)|Zustand]] eines Systems von zwei oder mehr Teilchen sich nicht als Kombination unabhängiger Ein-Teilchen-Zustände beschreiben lässt, sondern nur durch einen gemeinsamen Zustand.
Im Bereich der klassischen Physik kann es dieses Phänomen nicht geben. Dort sind zusammengesetzte Systeme stets ''separabel'', das heißt, jedes Teilsystem hat zu jeder Zeit einen bestimmten Zustand, der sein jeweiliges Verhalten bestimmt, wobei die Gesamtheit der Zustände der einzelnen Teilsysteme und deren Zusammenwirken das Verhalten des Gesamtsystems vollständig erklärt. In einem quantenphysikalisch verschränkten Zustand des Systems besetzen hingegen die Teilsysteme mehrere ihrer möglichen Zustände nebeneinander, wobei jedem dieser Zustände eines Teilsystems ein anderer Zustand der übrigen Teilsysteme zugeordnet ist. Um das Verhalten des Gesamtsystems richtig erklären zu können, muss man alle diese nebeneinander bestehenden Möglichkeiten zusammen betrachten. Dennoch zeigt jedes Teilsystem, wenn eine Messung an ihm durchgeführt wird, immer nur eine dieser Möglichkeiten, wobei die Wahrscheinlichkeit, dass gerade dieses Ergebnis auftritt, durch eine [[Wahrscheinlichkeitsverteilung]] bestimmt ist. Messergebnisse an mehreren verschränkten Teilsystemen sind miteinander [[Korrelation|korreliert]], das heißt, je nach dem Ergebnis der Messung an einem Teilsystem liegt für die möglichen Messergebnisse an den anderen Teilsystemen eine veränderte Wahrscheinlichkeitsverteilung vor. Diese durch Quantenverschränkung erzeugten Korrelationen werden auch als '''Quantenkorrelationen''' bezeichnet.


[[Quantenmechanische Messung|Messergebnisse]] bestimmter [[Observable]]n verschränkter Teilchen (z. B. Observable
== Überblick ==
[[Spin]]) sind [[Korrelation|korreliert]], das heißt nicht statistisch unabhängig, auch wenn die Teilchen weit voneinander entfernt sind. Die Korrelation kann jedoch nicht durch lokale [[verborgene Variablen]] erklärt werden, da die Messergebnisse die [[Bellsche Ungleichung]] verletzen. Dies wiederum bedeutet, dass die Messergebnisse an verschränkten Teilchen nur durch eine [[Lokalität (Physik)#Nichtlokalität in der Quantentheorie|nichtlokale]] Theorie erklärt werden können. Diese Nichtlokalität unterscheidet die Quantenmechanik grundsätzlich von [[Klassische Physik|klassischen physikalischen]] Theorien, bei denen eine unmittelbare Auswirkung lediglich lokal auftritt.
Verschränkte Zustände sind häufig. Ein verschränkter Zustand entsteht jedes Mal, wenn zwei Teilsysteme miteinander wechselwirken (z. B. miteinander kollidieren), und es danach verschiedene, aber aufeinander abgestimmte Möglichkeiten gibt, wie sie sich weiter verhalten (z. B. in welche Richtung sie nach dem Zusammenstoßen weiterfliegen). Alle diese Möglichkeiten haben nach der Quantenmechanik eine gewisse Wahrscheinlichkeit, mit der sie in entsprechend aufeinander abgestimmter Weise im Zustand des Gesamtsystems bis zum Moment der [[Quantenmechanische Messung|quantenmechanischen Messung]] vertreten sein müssen.


== Überblick ==
Die Verschränkung wird beendet, sobald man eines der Teilsysteme auf einen bestimmten seiner Zustände festlegt. Dann geht sofort auch ein anderes Teilsystem, das durch die Verschränkung mit dem ersten Teilsystem verknüpft war, in denjenigen Zustand über, der dem durch die Beobachtung festgestellten Zustand des ersten Teilsystems zugeordnet war. Der Zustand des Gesamtsystems zeigt dann keine Verschränkung mehr, denn beide Teilsysteme für sich betrachtet sind nun in einem je eigenen bestimmten Zustand.
Infolge der Möglichkeit der Quantenverschränkung bestimmt sich der Gesamtzustand eines zusammengesetzten Systems im Allgemeinen nicht durch die Zustände seiner Teilsysteme, das heißt, er separiert nicht in Einteilchenzustände, die durch Linearkombination den Gesamtzustand darstellen. Ein verschränkter Zustand kann nicht durch Präparation aller Einzelsysteme in jeweils geeignete Zustände erzeugt werden.
 
Als weiteres Beispiel neben dem Zustand nach einem Stoßprozess sei der [[Hyperfeinstruktur|Grundzustand]] des [[Wasserstoffatom]]s genannt, in dem sich die [[Spin]]s von Elektron und Proton zum Atomspin Null addieren. Die beteiligten Zustände der beiden Teilchen sind die, in denen sie ihren Spin parallel bzw. antiparallel zur z-Richtung ausgerichtet haben. Im Grundzustand des Atoms findet man für das Elektron wie für das Proton beide Zustände mit gleicher Wahrscheinlichkeit. Legt man durch eine Messung im Magnetfeld den Spin des Elektrons auf eine dieser Möglichkeiten fest, z. B. auf die (+z)-Richtung, dann erhält der Spin des Protons definitiv auch einen wohlbestimmten Zustand – und zwar den in (−z)-Richtung, was durch eine nachfolgende Messung am Proton bestätigt werden kann. Der Zustand des Atoms ist danach aber ein anderer, nicht verschränkter Zustand, der wiederum als eine Überlagerung der beiden verschränkten Zustände mit Atomspin Null und Eins, jeweils mit gleicher Amplitude, dargestellt werden kann.


Für räumlich getrennte Teilsysteme wird Quantenverschränkung zur Quanten-[[Lokalität (Physik)#Nichtlokalität in der Quantentheorie|Nichtlokalität]], das heißt, der Zustand des verschränkten Systems ist nicht lokalisiert, sondern erstreckt sich über das gesamte räumlich verteilte System. Ursprünglich nur für [[Mikrokosmos|mikroskopische]] Systeme als relevant vermutet, wurde Quantenverschränkung in jüngerer Zeit über [[Makrokosmos|makroskopische]] Distanzen und für [[Mesokosmos|mesoskopische]] Systeme direkt nachgewiesen (siehe z. B. das Lemma [[Topologischer Isolator|Topologische Isolatoren]], wo es um kohärente Systeme geht, die im Innern Isolatoren sind, aber an der Oberfläche metallisch leiten).
Das heißt, wenn man ein verschränktes System in einem gegebenen Zustand hat und durch gleichzeitige Messungen an mehreren Teilsystemen deren Zustand feststellt, dann liegen die Messergebnisse für jedes einzelne Teilsystem nicht fest, sind aber korreliert. Die Unbestimmtheit der Zustände der verschränkten Teilsysteme vor der Beobachtung zusammen mit diesen Korrelationen zwischen den zusammengehörigen Beobachtungsergebnissen stellt eines der größten Probleme für das Verständnis der Quantenphysik dar. [[Albert Einstein]], der dies im Jahr 1935 als erster in einem Gedankenexperiment theoretisch klar herausarbeitete (siehe [[EPR-Paradoxon]]), schloss daraus, dass die Quantenmechanik noch kein zutreffendes Bild von der physikalischen Realität geben könne, denn an eine – so wörtlich – „spukhafte Fernwirkung“, mit der die Messung an einem Teilsystem das Ergebnis der Messung am anderen beeinflussen könnte, um die Korrelationen zu erzeugen, wollte er nicht glauben.


Aufgrund der [[Bornsche Wahrscheinlichkeitsinterpretation|Bornschen Wahrscheinlichkeitsinterpretation]] der Quantentheorie ist die Verschränkung lange als rein statistische [[Korrelation]] missverstanden und daher quasi „verniedlicht“ worden, selbst von [[Erwin Schrödinger]], der diesen Begriff prägte. Verschränkte Zustände beschreiben individuelle Eigenschaften wie etwa den Gesamt[[drehimpuls]] eines Systems von zwei oder mehr Teilchen. Die Tragweite des Begriffes hat anscheinend erst [[Albert Einstein]] im Jahr 1935 in der mit dem [[Einstein-Podolsky-Rosen-Paradoxon|EPR-Effekt]] verbundenen Arbeit erkannt, obwohl er die wahre Bedeutung fehlinterpretierte (siehe unten). Die Bedeutung der Verschränkung ist erst dadurch bestätigt worden, dass [[John Stewart Bell]] 1964 feststellte, dass die Quantenmechanik die von ihm aufgestellte berühmte [[Bellsche Ungleichung]] verletzt. Dadurch wird, im Gegensatz zu den Grundannahmen Einsteins, eine noch unbekannte, durch [[verborgene Variablen]] beschriebene lokale Realität ausgeschlossen (die Quantenmechanik ist nichtlokal).
=== Erklärungsansätze ===


Die Quanten-Nichtlokalität bedarf daher auch keiner (in Einsteins Worten) „spukhaften Fernwirkung“;<ref name="Einstein1955">Max Born, Albert Einstein: ''Albert Einstein, Max Born. Briefwechsel 1916–1955.'' München (Nymphenburger) 1955, S.&nbsp;210.</ref> ebenso wenig bedarf die sogenannte [[Quantenteleportation]] der Portation von irgendetwas. Dies bedeutet, dass das Phänomen der Verschränkung nicht auf sogenannten verborgenen Variablen beruht, die wir nur (noch) nicht zu entdecken vermögen.
Die durch Verschränkung verursachten Korrelationen sind mittlerweile durch viele Experimente nachgewiesen. Sie sind unabhängig davon, wie weit die Orte, an denen die Messungen an den Teilsystemen vorgenommen werden, voneinander entfernt sind und in welchem zeitlichen Abstand die Messungen erfolgen. Das gilt auch dann, wenn die Messungen so weit voneinander entfernt sind und so schnell nacheinander (oder sogar gleichzeitig) durchgeführt werden, dass das Messergebnis an einem Teilchen den Zustand des anderen auf keinem physikalischen Weg beeinflusst haben kann. Bei bestimmten Experimenten sind die Korrelationen so stark, dass sie prinzipiell von keiner Theorie erklärt werden können, die wie die klassische Physik auf dem physikalischen Prinzip des „lokalen Realismus“ aufbaut, das heißt, dass jedes Teilsystem immer einen wohldefinierten Zustand hat, auf den ein anderes räumlich entferntes Teilsystem nur mit Lichtgeschwindigkeit einwirken kann. Damit wird nach der [[Bellsche Ungleichung|Bellschen Ungleichung]] auch ausgeschlossen, dass eine solche ''lokal-realistische'' Theorie mit hypothetischen zusätzlichen [[Verborgene Variablen|verborgenen Variablen]] das Phänomen der Quantenkorrelation beschreiben könnte.<ref>{{Literatur |Autor=Johanna L. Miller |Titel=Three groups close the loopholes in tests of Bell’s theorem |Sammelwerk=Physics Today |Band=69 |Nummer=1 |Datum=2016 |Seiten=14 |Sprache=en |DOI=10.1063/PT.3.3039}}</ref><ref>{{Literatur |Autor=Patrick Fraser, Barry Sanders |Titel=Loophole-Free Bell Tests and the Falsification of Local Realism |Sammelwerk=Journal for Student Science and Technology |Band=10 |Nummer=1 |Datum=2017 |Seiten=23-31 |arXiv=1805.09289 |DOI=10.13034/jsst.v10i1.164}}</ref>


Die Tatsache, dass die Verschränkung (im Gegensatz zur klassischen Physik) keine lokal-realistische Interpretation zulässt, bedeutet, dass entweder die Lokalität aufgegeben werden muss (etwa, wenn man der nichtlokalen Wellenfunktion selbst einen realen Charakter zubilligt&nbsp;– das geschieht insbesondere in [[Kollaps der Wellenfunktion|Kollapstheorien]], in der [[Viele-Welten-Interpretation]] oder der [[De-Broglie-Bohm-Theorie]]) oder das Konzept einer mikroskopischen Realität&nbsp;– oder aber beides; am radikalsten wird diese Abkehr vom klassischen Realismus in der [[Kopenhagener Deutung]] vertreten; nach dieser Interpretation, die bei den Physikern seit Jahrzehnten als Standard gilt, ist die Quantenmechanik weder real –&nbsp;da eine Messung den Zustand nicht feststellt, sondern präpariert&nbsp;– noch lokal&nbsp;– weil der Zustandsvektor <math>|\psi\rangle</math> die Wahrscheinlichkeitsamplituden gleichzeitig an allen Stellen festlegt, zum Beispiel <math>|\psi\rangle \to\psi(x,y,z)</math>.
Die Tatsache, dass die Verschränkung (im Gegensatz zur klassischen Physik) keine lokal-realistische [[Interpretationen der Quantenmechanik|Interpretation]] zulässt, bedeutet, dass entweder die Lokalität aufgegeben werden muss (etwa wenn man der nichtlokalen Wellenfunktion selbst einen realen Charakter zubilligt&nbsp;– das geschieht insbesondere in [[Kollaps der Wellenfunktion|Kollapstheorien]], in der [[Viele-Welten-Interpretation]] oder der [[De-Broglie-Bohm-Theorie]]) oder das Konzept einer mikroskopischen Realität&nbsp;– oder aber beides.<ref>Streng genommen gibt es noch eine dritte Möglichkeit, nämlich eine ''deterministische'' und lokal-realistische Theorie, in der aber aufgrund spezieller Anfangsbedingungen alles, insbesondere auch jede Messeinstellung in Bell-Experimenten durch die lokal-realistischen Variablen so vorherbestimmt ist, dass die Bell-Ungleichung verletzt wird. Dieser (kaum verfolgte) Ansatz geht auf John Bell zurück und wird als ''Superdeterminismus'' bezeichnet, vgl. z.&nbsp;B. {{Literatur |Autor=John F. Clauser |Hrsg=R. A. Bertlmann, A. Zeilinger |Titel=Early History of Bell’s Theorem |Sammelwerk=Quantum [Un]speakables |Verlag=Springer |Datum=2002 |Seiten=88 ff. |Sprache=en |Kommentar=und Referenzen darin}}<br />Bells ursprünglich unveröffentlichter Aufsatz von 1975 erschien später in {{Literatur |Autor=J. S. Bell, A. Shimony, M. A. Horne, J. F. Clauser |Titel=An Exchange on Local Beables |Sammelwerk=Dialectica |Band=39 |Nummer=2 |Datum=1985 |Seiten=85-110 |Sprache=en |DOI=10.1111/j.1746-8361.1985.tb01249.x |JSTOR=42970534}}</ref> Am radikalsten wird diese Abkehr vom klassischen Realismus in der [[Kopenhagener Deutung]] vertreten; nach dieser Interpretation, die bei den Physikern seit Jahrzehnten als Standard gilt, ist die Quantenmechanik nicht „realistisch“ (da eine Messung nicht einen Zustand feststellt, wie er vor der Messung vorlag, sondern den Zustand präpariert, der nach der Messung vorliegt) und im engeren Sinne auch nicht „lokal“ (weil der Zustand <math>|\psi\rangle</math> die Wahrscheinlichkeitsamplituden für alle Orte im Raum gleichzeitig festlegt, zum Beispiel durch die Wellenfunktion <math>\psi(x,y,z)</math>).


=== Geschichte ===
== Geschichte ==
Die Möglichkeit der Verschränkung gehört zu denjenigen Konsequenzen der Quantenmechanik, die den meisten Widerstand gegen diese Theorie als solche erzeugte. [[Albert Einstein]], [[Boris Podolsky]] und [[Nathan Rosen]] formulierten 1935 den [[Einstein-Podolsky-Rosen-Paradoxon|EPR-Effekt]], nach dem Quantenverschränkung zur Verletzung des klassischen Prinzips des lokalen Realismus führen würde, was von Einstein in einem berühmten Zitat als „spukhafte Fernwirkung“ bezeichnet wurde.
Die Verschränkung und ihre Folgen gehören zu denjenigen Konsequenzen der Quantenmechanik, die zum klassischen (Alltags-)Verständnis besonders deutlich im Widerspruch stehen, und haben damit den meisten Widerstand gegen diese Theorie als ganze hervorgerufen. [[Albert Einstein]], [[Boris Podolsky]] und [[Nathan Rosen]] formulierten 1935 den [[Einstein-Podolsky-Rosen-Paradoxon|EPR-Effekt]], nach dem die Quantenverschränkung zur Verletzung des klassischen Prinzips des lokalen Realismus führen würde, was von Einstein in einem berühmten Zitat als „spukhafte Fernwirkung“ („spooky action at a distance“) bezeichnet wurde. Jedoch konnten die Vorhersagen der Quantenmechanik durch Experimente höchst erfolgreich belegt werden.<ref>Casey Blood: ''[https://arxiv.org/abs/1001.3080 A primer on quantum mechanics and its interpretations.]''</ref><ref>Cole Miller: ''[https://www.astro.umd.edu/~miller/teaching/astr320/lecture21.pdf Principles of Quantum Mechanics.]'' (PDF; 51,5&nbsp;kB). Abgerufen am 19. Dezember 2021.</ref>


Auf der anderen Seite konnten die Vorhersagen der Quantenmechanik höchst erfolgreich experimentell belegt werden,<ref>Casey Blood: [https://arxiv.org/abs/1001.3080 A primer on quantum mechanics and its interpretations]</ref><ref>Cole Miller: [https://www.astro.umd.edu/~miller/teaching/astr320/lecture21.pdf Principles of Quantum Mechanics], abgerufen am 21. August 2017</ref> sogar Einsteins „spukhafte Fernwirkung“ wurde beobachtet.<ref name="Gisin2008" /> Viele Wissenschaftler führten dies irrtümlicherweise (siehe unten) auf unbekannte, [[Determinismus|deterministische]] „verborgene Variablen“ zurück, die dem lokalen Realismus unterworfen seien, aber zugleich alle Quantenphänomene erklären könnten.
Viele Wissenschaftler führten dies irrtümlicherweise auf noch unbekannte, [[Determinismus|deterministische]] „verborgene Variablen“ zurück, die sowohl dem lokalen Realismus unterworfen seien als auch alle Quantenphänomene erklären könnten. Doch 1964 zeigte [[John Stewart Bell]] theoretisch, dass man diese Frage experimentell entscheiden kann. Nach der [[Bellsche Ungleichung|Bellschen Ungleichung]] können die Korrelationen durch Quantenverschränkung stärker sein als mit einer beliebigen lokal-realistischen Theorie mit verborgenen Variablen zu erklären wäre. Dies wurde durch Experimente bestätigt, sodass die Quantenverschränkung heute als physikalisches Phänomen anerkannt ist (bis auf wenige Abweichler). Von Bell stammt auch die Veranschaulichung von Verschränkung und EPR-Effekt anhand des Vergleichs mit „[[Reinhold Bertlmann#Bertlmanns Socken|Bertlmanns Socken]]“.


1964 zeigte [[John Stewart Bell]], dass die Effekte der Quantenverschränkung experimentell von den Ergebnissen der auf verborgenen Variablen basierenden Theorien unterschieden werden können (siehe [[Bellsche Ungleichung]]). Seine Ergebnisse wurden durch weitere Experimente bestätigt, sodass die Quantenverschränkung heute als physikalisches Phänomen anerkannt ist (bis auf wenige Abweichler). Er veranschaulichte Verschränkung und EPR-Effekt anhand des Vergleichs mit „[[Reinhold Bertlmann#Bertlmanns Socken|Bertlmanns Socken]]“.
2008 wurde von der Gruppe um [[Nicolas Gisin]] in einem Experiment überdies eine untere Grenze für die Geschwindigkeit einer angenommenen „spukhaften Fernwirkung“ gesetzt: Demnach müssten zwei Photonen, die bezüglich der Polarisation verschränkt waren, mit wenigstens 10.000-facher Lichtgeschwindigkeit kommunizieren, wenn sie denn das Messergebnis der Polarisation an einem Photon an das andere senden würden.<ref name="Gisin2008">Daniel Salart, Augustin Baas, Cyril Branciard, Nicolas Gisin, Hugo Zbinden: ''Testing the speed of ‘spooky action at a distance’.'' In: ''Nature.'' 454, 2008, S.&nbsp;861–864 ([https://www.nature.com/articles/nature07121 Abstract]).</ref> So eine Kommunikation würde der Relativitätstheorie eklatant widersprechen und unter anderem bedeuten, dass Zeitschleifen möglich sind.


Nach Bohm ist trotzdem eine –&nbsp;allerdings nichtlokale&nbsp;– realistische Interpretation mit verborgenen Variablen möglich (siehe [[De-Broglie-Bohm-Theorie]]). Der Nobelpreisträger [[Anthony James Leggett]] konnte die Bellsche Ungleichung für diesen Fall verschärfen, und eine Forschungsgruppe um [[Anton Zeilinger]]<ref name="Zeilinger2007">Simon Gröblacher, Tomasz Paterek, Rainer Kaltenbaek, Caslav Brukner, Marek Zukowski, Markus Aspelmeyer, Anton Zeilinger: ''An experimental test of non-local realism.'' In: ''Nature.'' 446, 2007, S.&nbsp;871–875 ([http://www.nature.com/nature/journal/v446/n7138/abs/nature05677.html Abstract]).</ref> behauptet in einer Veröffentlichung in der Zeitschrift ''[[Nature]],'' eine Verletzung auch der verschärften Ungleichung gezeigt zu haben. Dies würde zeigen, dass auch mit einer nichtlokalen Mechanik eine „realistische“ Interpretation der Quantenmechanik ausgeschlossen ist. Es muss jedoch auch in diesem Fall abgewartet werden, bis dies von anderen Wissenschaftlern bestätigt wird.
== Keine überlichtschnelle Informationsübertragung ==
Die Korrelationen durch Verschränkung verletzen nicht die [[Relativitätstheorie]]. Zwar liegt immer die Interpretation nahe, die Korrelationen könnten nur durch eine überlichtschnelle Wechselwirkung der verschränkten Teilsysteme zustande kommen. Es handelt sich aber nicht um eine Wechselwirkung, denn hierbei kann keine Information übertragen werden. Die Kausalität ist somit nicht verletzt. Dafür gibt es folgende Gründe:
* Quantenmechanische Messungen sind [[probabilistisch]], das heißt nicht streng kausal.
* Das [[No-Cloning-Theorem]] verbietet die statistische Überprüfung verschränkter Quantenzustände, ohne dass diese dabei verändert werden.
* Das [[No-Communication-Theorem]] besagt, dass Messungen an einem quantenmechanischen Teilsystem nicht benutzt werden können, um Informationen zu einem anderen Teilsystem zu übertragen.


Unterdessen hat eine Gruppe der Universität Genf um [[Nicolas Gisin]] der Geschwindigkeit der „spukhaften Fernwirkung“ eine extrem hohe „untere Grenze“ gesetzt: Die Gruppe konnte im Experiment zeigen, dass zwei verschränkte Photonen bezüglich verschiedener Eigenschaften, unter anderem der Polarisation, mit wenigstens 10.000-facher Lichtgeschwindigkeit kommunizieren müssten, wenn sie denn kommunizierten.<ref name="Gisin2008">Daniel Salart, Augustin Baas, Cyril Branciard, Nicolas Gisin, Hugo Zbinden: ''Testing the speed of ‘spooky action at a distance’.'' In: ''Nature.'' 454, 2008, S.&nbsp;861–864 ([http://www.nature.com/nature/journal/v454/n7206/abs/nature07121.html Abstract]).</ref>
Zwar ist Informationsübertragung durch Verschränkung allein nicht möglich, wohl aber mit mehreren verschränkten Systemen in Verbindung mit einem klassischen Informationskanal, siehe [[Quantenteleportation]]. Trotz dieses Namens können wegen des benötigten klassischen Informationskanals keine Informationen schneller als das Licht übertragen werden.


=== Informationsübertragung ===
== Besondere verschränkte Systeme ==
Wenn auch nicht buchstabengetreu, so gehorcht die Verschränkung doch dem Geist der [[Relativitätstheorie]]. Zwar können verschränkte Systeme auch über große räumliche Entfernung miteinander wechselwirken, dabei kann aber keine Information übertragen werden, sodass die Kausalität nicht verletzt ist. Dafür gibt es folgende Gründe:
=== Biologische Systeme ===
* Quantenmechanische Messungen sind [[probabilistisch]], d.&nbsp;h. nicht streng kausal.
Graham Fleming, Mohan Sarovar und andere (Berkeley) meinten, mit Femtosekunden-Spektroskopie nachgewiesen zu haben, dass im [[Photosystem]]-[[Lichtsammelkomplex]] der Pflanzen eine über den gesamten Komplex reichende stabile Verschränkung von Photonen stattfindet, was die effiziente Nutzung der Lichtenergie ohne Wärmeverlust erst möglich mache. Bemerkenswert sei daran unter anderem die Temperaturstabilität des Phänomens.<ref>Berkeley Lab Press Release: ''[https://newscenter.lbl.gov/2010/05/10/untangling-quantum-entanglement/ Untangling the Quantum Entanglement Behind Photosynthesis: Berkeley scientists shine new light on green plant secrets.]''</ref><ref>{{Literatur |Autor=Mohan Sarovar, Akihito Ishizaki, Graham R. Fleming, K. Birgitta Whaley |Titel=Quantum entanglement in photosynthetic light harvesting complexes |Sammelwerk=Nature Physics |Band=6 |Datum=2010 |Seiten=462 |arXiv=0905.3787 |DOI=10.1038/nphys1652}}</ref> Kritik daran äußerten [[Sandu Popescu]], [[Hans J. Briegel]] und Markus Tiersch.<ref>{{Literatur |Autor=Briegel, Popescu, Tiersch |Titel=A critical view of transport and entanglement in models of photosynthesis |Sammelwerk=Phil. Trans. R. Soc. A |Band=370 |Datum=2012 |Seiten=3771 |arXiv=1104.3883 |DOI=10.1098/rsta.2011.02022011}}</ref>
* Das [[No-Cloning-Theorem]] verbietet die statistische Überprüfung verschränkter Quantenzustände.
* Das [[No-Communication-Theorem]] besagt, dass Messungen an einem quantenmechanischen Teilsystem nicht benutzt werden können, um Informationen zu einem anderen Teilsystem zu übertragen.


Zwar ist Informationsübertragung durch Verschränkung allein nicht möglich, wohl aber mit mehreren verschränkten Zuständen zusammen mit einem klassischen Informationskanal ([[Quantenteleportation]]). Trotz des Namens können wegen des klassischen Informationskanals keine Informationen schneller als das Licht übertragen werden.
[[Stuart Hameroff]] und [[Roger Penrose]] schlagen zur Erklärung der erstaunlichen Leistungsfähigkeit des Gehirns vor, dass diese unter anderem auf Korrelationen und Verschränkung zwischen elektronischen Zuständen der in den [[Neuron]]en häufigen [[Mikrotubuli]] beruht.<ref>{{Literatur |Autor=Stuart Hameroff, Roger Penrose |Titel=Consciousness in the universe. A review of the ‘Orch OR’ theory |Sammelwerk=Physics of life reviews |Band=11 |Nummer=1 |Datum=2014 |Seiten=39-78 |DOI=10.1016/j.plrev.2013.08.002}}</ref> Dem wurde mit physikalischer Begründung widersprochen.<ref>{{Literatur |Autor=Jeffrey R. Reimers, Laura K. McKemmish, Ross H. McKenzie, Alan E. Mark, Noel S. Hush |Titel=The revised Penrose-Hameroff orchestrated objective-reduction proposal for human consciousness is not scientifically justified. Comment on “Consciousness in the universe: a review of the ‘Orch OR’ theory” by Hameroff and Penrose |Sammelwerk=Physics of life reviews |Band=11 |Nummer=1 |Datum=2014 |Seiten=103 |DOI=10.1016/j.plrev.2013.11.003}}</ref>


== Natürlich-verschränkte Systeme ==
=== Makroskopische Systeme ===
Graham Fleming, Mohan Sarovar und andere (Berkeley) meinten, mit Femtosekunden-Spektroskopie nachgewiesen zu haben, dass im [[Photosystem]]-[[Lichtsammelkomplex]] der Pflanzen eine über den gesamten Komplex reichende stabile Verschränkung von Photonen stattfindet, was die effiziente Nutzung der Lichtenergie ohne Wärmeverlust erst möglich mache. Bemerkenswert sei daran unter anderem die Temperaturstabilität des Phänomens.<ref>Berkeley Lab Press Release: ''[http://newscenter.lbl.gov/feature-stories/2010/05/10/untangling-quantum-entanglement/ Untangling the Quantum Entanglement Behind Photosynthesis: Berkeley scientists shine new light on green plant secrets.]''</ref><ref>Mohan Sarovar, Akihito Ishizaki, Graham R. Fleming, K. Birgitta Whaley: ''Quantum entanglement in photosynthetic light harvesting complexes.'' {{arxiv|0905.3787}}.</ref> Kritik daran äußerten [[Sandu Popescu]], [[Hans J. Briegel]] und Markus Tiersch.<ref>Briegel, Popescu, Tiersch: ''A critical view of transport and entanglement in models of photosynthesis.'' 2011, [https://arxiv.org/pdf/1104.3883v1.pdf Arxiv, PDF.]</ref>
Forschern gelang es, die Bewegung eines millimetergroßen mechanischen Oszillators mit einem separaten, weit entfernten Spin-System einer Wolke von Atomen zu verschränken.<ref>{{cite news |title=Quantum entanglement realized between distant large objects |url=https://phys.org/news/2020-09-quantum-entanglement-distant-large.html |work=phys.org |language=en}}</ref><ref>{{cite journal |last1=Thomas |first1=Rodrigo A. |last2=Parniak |first2=Michał |last3=Østfeldt |first3=Christoffer |last4=Møller |first4=Christoffer B. |last5=Bærentsen |first5=Christian |last6=Tsaturyan |first6=Yeghishe |last7=Schliesser |first7=Albert |last8=Appel |first8=Jürgen |last9=Zeuthen |first9=Emil |last10=Polzik |first10=Eugene S. |title=Entanglement between distant macroscopic mechanical and spin systems |journal=Nature Physics |date=2020-09-21 |pages=1–6 |doi=10.1038/s41567-020-1031-5 |arxiv=2003.11310 |url=https://www.nature.com/articles/s41567-020-1031-5 |language=en |issn=1745-2481}}</ref>


== Erzeugung verschränkter Systeme ==
== Erzeugung verschränkter Photonen ==
Verschränkte [[Photon]]en können durch die [[parametrische Fluoreszenz]] (parametric down-conversion) in [[Nichtlineare Optik|nichtlinear optischen]] Kristallen erzeugt werden. Dabei wird aus einem Photon mit hoher Energie im Kristall ein verschränktes Paar von Photonen mit niedrigerer Energie (der Hälfte der Energie des Ursprungsphotons) erzeugt. Die Richtungen, in die diese beiden Photonen abgestrahlt werden, sind miteinander und mit der Richtung des eingestrahlten Photons korreliert, sodass man derartig erzeugte verschränkte Photonen gut für Experimente (und andere Anwendungen) nutzen kann.
Bei Photonen bezieht sich die Verschränkung meist auf die [[Polarisation]]. Misst man die Polarisation des einen Photons, ist dadurch die Polarisation des anderen Photons festgelegt (z.&nbsp;B. bei linearer Polarisation um 90° gedreht). Jedoch können sie auch hinsichtlich der Flugrichtung verschränkt sein.


Bestimmte Atomsorten kann man mit Hilfe eines Lasers derart anregen, dass sie bei ihrer Rückkehr in den nichtangeregten Grundzustand ebenfalls ein Paar verschränkter Photonen abstrahlen. Diese werden jedoch mit gleicher Wahrscheinlichkeit in jede beliebige Raumrichtung abgestrahlt, sodass sie nicht sehr effizient genutzt werden können.
Die beiden Gammaquanten der [[Vernichtungsstrahlung]] bilden ein verschränktes Photonenpaar. Die Verschränkung betrifft sowohl die Flugrichtungen, die einzeln beliebig sein können, aber zusammen (im Schwerpunktsystem) einander exakt entgegengesetzt sind, als auch die Zirkularpolarisation&nbsp;– bei jedem der Photonen rechts und links gleich häufig, aber bei beiden Photonen immer beide rechts oder beide links. Die Richtungsverschränkung ist Grundlage der verbreiteten medizinischen Anwendung in der [[Positronen-Emissions-Tomographie]] (PET).


Bei Photonen bezieht sich die Verschränkung meist auf die [[Polarisation]] der Photonen. Misst man die Polarisation des einen Photons, ist dadurch die Polarisation des anderen Photons festgelegt (z.&nbsp;B. um 90° gedreht).
Verschränkte niederenergetische [[Photon]]en können durch die [[parametrische Fluoreszenz]] (parametric down-conversion) in [[Nichtlineare Optik|nichtlinear optischen]] Kristallen erzeugt werden. Dabei wird aus einem Photon höherer Energie im Kristall ein verschränktes Paar von Photonen mit je halber Energie erzeugt. Die Richtungen, in die diese beiden Photonen abgestrahlt werden, sind stark miteinander und mit der Richtung des eingestrahlten Photons korreliert, sodass man die so erzeugten verschränkten Photonen gut für Experimente (und andere Anwendungen) nutzen kann (siehe z.&nbsp;B. [[Quantenradierer]]).


Bei [[Atom]]en bezieht sich die Verschränkung auf deren [[Spin]]. Regt man ein zweiatomiges [[Molekül]] mit einem Spin von null mit einem Laser derart hoch an, dass es zerfällt ([[Dissoziation (Chemie)|dissoziiert]]), sind die beiden freiwerdenden Atome bezüglich ihres Spins verschränkt. Bei einer entsprechenden Messung wird eines von ihnen den Spin&nbsp;+1/2 zeigen, das andere −1/2. Es ist aber nicht vorhersagbar, welches der beiden Atome den positiven und welches den negativen haben wird. Misst man aber den Spin eines der beiden Atome, wird dadurch der Spin des anderen festgelegt.
Bestimmte Atomsorten kann man mit Hilfe eines Lasers derart anregen, dass sie bei ihrer Rückkehr in den Grundzustand ebenfalls ein Paar polarisationsverschränkter Photonen abstrahlen. Diese werden jedoch nahezu unkorreliert in beliebiger Raumrichtung abgestrahlt, sodass diese nicht sehr effizient genutzt werden können.


== Anwendungen ==
== Anwendungen ==
* [[Quantenschlüsselaustausch]]: Sicherer Austausch von Schlüsseln zwischen zwei Kommunikationspartnern zur verschlüsselten Übermittlung von Information. Der Austausch ist sicher, weil es nicht möglich ist, ihn ohne Störung abzuhören. Die austauschenden Partner können daher ein „Mithören“ beim Schlüsselaustausch bemerken.
* Bei jeder [[Quantenmechanische Messung|quantenmechanischen Messung]] wird das Messobjekt mit dem Messapparat verschränkt, um an dessen „Zeigerstellung“ den Zustand des Messobjekts ablesen zu können.
* [[Quantencomputer]]: Bei Berechnungen mittels [[Qubit]]s auf einem Quantencomputer wird bei manchen [[Algorithmus|Algorithmen]] die Verschränkung von Qubits untereinander genutzt. Mit Quantencomputern könnten Probleme gelöst werden, die mit konventionellen [[Computer]]n zwar prinzipiell lösbar sind, jedoch nur mit nicht realisierbarem Zeitaufwand.
* Beim [[Quantenradierer]] und [[Delayed-Choice-Experiment]] wird der Anschein erweckt, Informationen könnten retrokausal gelöscht werden.
: Generell ist die Erzeugung verschränkter Systeme nicht einfach, weshalb bisher kein praktisch anwendbarer Quantencomputer für komplexe Berechnungen existiert. 2010 gelang es einem Team amerikanischer Wissenschaftler, mithilfe des „[[Frequenzkamm]]“-Prinzips verschränkte atomare Qubits auf relativ einfache Weise zu erzeugen.<ref>[http://physicsworld.com/cws/article/news/42277 ''Combing makes for neat qubits.''] Bei: ''physicsworld.com.'' 12.&nbsp;April 2010.</ref> Dennoch ist der Quantencomputer gegenwärtig noch ein überwiegend theoretisches Konzept.
* [[Quantenschlüsselaustausch]]: Sicherer Austausch von Schlüsseln zwischen zwei Kommunikationspartnern zur verschlüsselten Übermittlung von Information. Der Austausch ist sicher, weil es nicht möglich ist, ihn ohne bemerkbare Störung abzuhören. Die austauschenden Partner können daher ein eventuelles „Mithören“ beim Schlüsselaustausch bemerken. Während der gewöhnliche Quantenschlüsselaustausch auch ohne Verschränkung möglich ist (z.&nbsp;B. mit dem [[Quantenschlüsselaustausch#BB84-Protokoll|BB84-Protokoll]]), erlaubt die Verwendung verschränkter Zustände einen sicheren Quantenschlüsselaustausch selbst dann, wenn man den verwendeten Geräten nicht vertraut (man spricht von ''geräteunabhängiger'' bzw. ''device-independent'' Sicherheit).<ref name="VV-QKD">{{Literatur |Autor=Umesh Vazirani, Thomas Vidick |Titel=Fully Device-Independent Quantum Key Distribution |Sammelwerk=Phys. Rev. Lett. |Band=113 |Nummer=14 |Datum=2014 |Seiten=140501 |arXiv=1210.1810 |DOI=10.1103/physrevlett.113.140501}}</ref>
* [[Quantencomputer]]: Bei Berechnungen mittels [[Qubit]]s auf einem Quantencomputer spielt die Verschränkung der Qubits eine zentrale Rolle. Einerseits beruht der wesentliche Vorteil von Quantencomputern (dass manche Probleme durch [[Quantenalgorithmus|Quantenalgorithmen]] mit sehr viel weniger Rechenschritten gelöst werden können als auf konventionellen [[Computer]]n) auf der Verschränkung vieler Qubits im Verlauf der Rechnung.<ref>{{Literatur |Autor=R. Jozsa and N. Linden |Titel=On the role of entanglement in quantum computational speed-up |Sammelwerk=Proc. R. Soc. A |Band=459 |Datum=2003 |Seiten=2011-2032 |arXiv=quant-ph/0201143 |DOI=10.1098/rspa.2002.1097}}</ref><ref>{{Literatur |Autor=John Preskill |Titel=Quantum Computing in the NISQ era and beyond |Sammelwerk=Quantum |Band=2 |Datum=2018 |Seiten=79 |arXiv=1801.00862 |DOI=10.22331/q-2018-08-06-79}}</ref> Andererseits verwenden auch die Verfahren zur [[Quantenfehlerkorrektur]], die nötig sind, um die Quantenrechnungen vor [[Dekohärenz]] zu schützen, verschränkte Zustände.<ref>{{Literatur |Autor=Michael A. Nielsen, Isaac L. Chuag |Titel=Quantum Computation and Quantum Information |Verlag=Cambridge University Press |Datum=2000 |ISBN=0-521-63503-9 |Kapitel=Kapitel 10: Quantum Error Correction |Sprache=en}}</ref>
* In der [[Quantenmetrologie]] werden verschränkte Zustände vieler Teilchen verwendet, um die mit begrenzten Ressourcen (Zahl der verwendeten Teilchen) mögliche Messgenauigkeit zu erhöhen.<ref>{{Literatur |Autor=V. Giovannetti, S. Lloyd, L. Maccone |Titel=Advances in quantum metrology |Sammelwerk=Nature Phot. |Band=5 |Datum=2011 |Seiten=222-229 |arXiv=1102.2318 |DOI=10.1038/nphoton.2011.35}}</ref>


== Mathematische Betrachtung ==
== Mathematische Betrachtung ==
Zeile 70: Zeile 75:
: <math>\sum_{i,j} c_{ij} |i\rangle_{\rm A} \; |j\rangle_{\rm B}</math>
: <math>\sum_{i,j} c_{ij} |i\rangle_{\rm A} \; |j\rangle_{\rm B}</math>


Die separablen Zustände von <math>{\mathcal H}_{\rm A} \otimes {\mathcal H}_{\rm B}</math> sind die, deren Koeffizienten die Darstellung <math>c_{i,j}=a_ib_j</math> erlauben, also die wie oben faktorisiert werden können. Ist ein Zustand nicht separabel, so nennt man ihn ''verschränkt.''
Die separablen Zustände von <math>{\mathcal H}_{\rm A} \otimes {\mathcal H}_{\rm B}</math> sind die, deren Koeffizienten die Darstellung <math>c_{i,j} = a_ib_j</math> erlauben, die also wie oben faktorisiert werden können. Ist ein Zustand nicht separabel, so nennt man ihn ''verschränkt.''<ref>Mit anderen Worten: Für die Koeffizientenmatrix <math>C = (c_{i,j})</math> ''separabler'' Zustände <math>\sum_{i,j} c_{ij} |i\rangle_{\rm A} \; |j\rangle_{\rm B}</math> gilt <math>\operatorname{rang} C = 1</math>, für diejenige ''verschränkter'' Zustände hingegen <math>\operatorname{rang} C > 1</math>.</ref>


Zum Beispiel seien zwei Basisvektoren <math>\{ | 0 \rangle_{\rm A}, | 1 \rangle_{\rm A} \}</math> von <math>{\mathcal H}_{\rm A}</math> und zwei Basisvektoren <math>\{ | 0 \rangle_{\rm B}, | 1 \rangle_{\rm B} \}</math> von <math>{\mathcal H}_{\rm B}</math> gegeben. Dann ist der folgende Zustand, der sog. „Singulett-Zustand“, ''verschränkt:''<ref>Verschränkt wäre auch der sogenannte „mittlere Triplett-Zustand“, bei dem das Minus-Zeichen durch ein Plus-Zeichen ersetzt ist. Mathematisch gesehen ergibt sich nur mit dem Minuszeichen die einfachste („identische“) [[irreduzible Darstellung]] bei der Ausreduzierung des [[Tensorprodukt]]es der Darstellungsräume zweier Einteilchensysteme.</ref>
Zum Beispiel seien zwei Basisvektoren <math>\{ | 0 \rangle_{\rm A}, | 1 \rangle_{\rm A} \}</math> von <math>{\mathcal H}_{\rm A}</math> und zwei Basisvektoren <math>\{ | 0 \rangle_{\rm B}, | 1 \rangle_{\rm B} \}</math> von <math>{\mathcal H}_{\rm B}</math> gegeben. Dann ist der folgende Zustand, der sog. „Singulett-Zustand“, ''verschränkt:''<ref>Verschränkt wäre auch der sogenannte „mittlere Triplett-Zustand“, bei dem das Minus-Zeichen durch ein Plus-Zeichen ersetzt ist. Mathematisch gesehen ergibt sich nur mit dem Minuszeichen die einfachste („identische“) [[irreduzible Darstellung]] bei der Ausreduzierung des [[Tensorprodukt]]es der Darstellungsräume zweier Einteilchensysteme.</ref>
Zeile 79: Zeile 84:


Als [[Quantenmechanische Messung|quantenmechanische Messwerte]] können nur Eigenwerte hermitescher Operatoren auftreten. Seien nun also „Messoperatoren“ <math>\Omega^{(i)}</math> in jedem der beiden Teilsysteme <math>A</math> und <math>B</math> gegeben, welche die folgenden beiden Eigenwertgleichungen erfüllen:
Als [[Quantenmechanische Messung|quantenmechanische Messwerte]] können nur Eigenwerte hermitescher Operatoren auftreten. Seien nun also „Messoperatoren“ <math>\Omega^{(i)}</math> in jedem der beiden Teilsysteme <math>A</math> und <math>B</math> gegeben, welche die folgenden beiden Eigenwertgleichungen erfüllen:
: <math>\Omega^{(i)}|0\rangle_{(i)}=\lambda_0 |0\rangle_{(i)} \text{ und } \Omega^{(i)}|1\rangle_{(i)}=\lambda_1 |1\rangle_{(i)}</math>.
 
: <math>\Omega^{(i)}|0\rangle_{(i)}=\lambda_0 |0\rangle_{(i)} \text{ und } \Omega^{(i)}|1\rangle_{(i)}=\lambda_1 |1\rangle_{(i)}</math>
 
Durch das Tensorprodukt mit dem Einsoperator <math>I</math> kann man mit obigen Messoperatoren der Teilsysteme einen Operator auf dem Tensorproduktraum erzeugen, wobei das System, an dem gemessen wird, dann im Subskript notiert ist:
Durch das Tensorprodukt mit dem Einsoperator <math>I</math> kann man mit obigen Messoperatoren der Teilsysteme einen Operator auf dem Tensorproduktraum erzeugen, wobei das System, an dem gemessen wird, dann im Subskript notiert ist:
: <math>\Omega_{A}=\Omega^{(A)}\otimes I^{(B)} \text{ bzw. } \Omega_{B}=I^{(A)}\otimes \Omega^{(B)}</math>
: <math>\Omega_{A}=\Omega^{(A)}\otimes I^{(B)} \text{ bzw. } \Omega_{B}=I^{(A)}\otimes \Omega^{(B)}</math>


Zeile 88: Zeile 96:
# Alice misst <math>\lambda_1</math>, und der Zustand kollabiert zu <math>|1\rangle_{\rm A} |0\rangle_{\rm B}.</math>
# Alice misst <math>\lambda_1</math>, und der Zustand kollabiert zu <math>|1\rangle_{\rm A} |0\rangle_{\rm B}.</math>


Im ersten Fall wird jede weitere Messung <math>\Omega_{\rm B}</math> durch Bob immer <math>\lambda_1</math> ergeben, im zweiten Fall immer <math>\lambda_0</math>. Also wurde das System durch die von Alice durchgeführte Messung verändert, auch wenn A und B räumlich getrennt sind. Hier liegt das [[Einstein-Podolsky-Rosen-Paradoxon|EPR-Paradoxon]] begründet, und auch die sog. [[Quantenteleportation]].
Im ersten Fall kann (oder konnte) jede Messung <math>\Omega_{\rm B}</math> durch Bob immer nur <math>\lambda_1</math> ergeben, im zweiten Fall immer nur <math>\lambda_0</math>. Also wurde der Zustand des Systems durch die von Alice durchgeführte Messung verändert, auch wenn <math>A</math> und <math>B</math> räumlich getrennt sind. Hier liegt das [[Einstein-Podolsky-Rosen-Paradoxon|EPR-Paradoxon]] begründet, und auch die sog. [[Quantenteleportation]].


Das Ergebnis von Alices Messung ist zufällig, sie kann nicht den Zustand bestimmen, in den das System kollabiert, und kann daher durch Handlungen an ihrem System keine Informationen zu Bob übertragen. Eine mögliche Hintertür: Sollte Bob mehrere exakte Duplikate der Zustände machen können, die er empfängt, könnte er auf statistischem Weg Informationen sammeln&nbsp;– das [[No-Cloning-Theorem]] beweist aber die Unmöglichkeit des Klonens von Zuständen. Daher wird –&nbsp;wie oben erwähnt&nbsp;– die Kausalität nicht verletzt.
Das Ergebnis von Alices Messung ist zufällig, sie kann nicht den Zustand bestimmen, in den das System kollabiert, und kann daher durch Handlungen an ihrem System keine Informationen zu Bob übertragen. Eine zunächst möglich scheinende Hintertür: Sollte Bob mehrere exakte Duplikate der Zustände machen können, die er empfängt, könnte er auf statistischem Weg Informationen sammeln&nbsp;– das [[No-Cloning-Theorem]] beweist aber die Unmöglichkeit des Klonens von Zuständen. Daher wird –&nbsp;wie oben erwähnt&nbsp;– die Kausalität nicht verletzt.


Der Grad der Verschränkung eines Zustandes wird [[Monotone Abbildung|monoton]] durch die [[Von-Neumann-Entropie]] <math>S=-\text{tr}(\rho_\text{red} \ln(\rho_\text{red}))</math> des ''reduzierten Dichteoperators'' des Zustandes gemessen. Die Von-Neumann-Entropie des reduzierten Dichteoperators eines unverschränkten Zustandes ist null. Dagegen ist die Von-Neumann-Entropie eines reduzierten Dichteoperators eines maximal verschränkten Zustandes (wie z.&nbsp;B. eines [[Bell-Zustand]]es) maximal.<ref>Naresh Chandra, Rama Ghosh: ''Quantum Entanglement in Electron Optics: Generation, Characterization, and Applications.'' Springer, 2013, ISBN 3-642-24070-4, S.&nbsp;43. [http://books.google.de/books?id=be6BCYFzqFQC&lpg=PA43&dq=maximally%20entangled%20von%20neumann%20entropy&hl=de&pg=PA43#v=onepage&q=maximally%20entangled%20von%20neumann%20entropy&f=false Google Books.]</ref>
Der [[Verschränkungsmaß|Grad der Verschränkung]] eines Zustandes wird durch die [[Von-Neumann-Entropie]] <math>S = -\text{tr}(\rho_\text{red} \ln(\rho_\text{red}))</math> des ''reduzierten Dichteoperators'' des Zustandes gemessen. Die Von-Neumann-Entropie des reduzierten Dichteoperators eines unverschränkten Zustandes ist null. Dagegen ist die Von-Neumann-Entropie eines reduzierten Dichteoperators eines maximal verschränkten Zustandes (wie z.&nbsp;B. eines [[Bell-Zustand]]es) maximal.<ref>Naresh Chandra, Rama Ghosh: ''Quantum Entanglement in Electron Optics: Generation, Characterization, and Applications.'' Springer, 2013, ISBN 3-642-24070-4, S.&nbsp;43. [https://books.google.de/books?id=be6BCYFzqFQC&lpg=PA43&dq=maximally+entangled+von+neumann+entropy&hl=de&pg=PA43#v=onepage&q=maximally%20entangled%20von%20neumann%20entropy&f=false Google Books.]</ref>


Hier sei noch darauf hingewiesen, dass es neben den oben besprochenen ''verschränkten reinen Zuständen'' (denen die reinen Produktzustände –&nbsp;ohne Verschränkung&nbsp;– gegenüberstehen) die ''verschränkten gemischten Zustände'' gibt (denen die gemischten Produktzustände –&nbsp;ohne Verschränkung&nbsp;– gegenüberstehen).
Hier sei noch darauf hingewiesen, dass es neben den oben besprochenen ''verschränkten reinen Zuständen'' (denen die reinen Produktzustände –&nbsp;ohne Verschränkung&nbsp;– gegenüberstehen) die ''verschränkten gemischten Zustände'' gibt (denen die gemischten Produktzustände –&nbsp;ohne Verschränkung&nbsp;– gegenüberstehen).


== Test auf Verschränkung ==
== Test auf Verschränkung ==
Für einen reinen verschränkten Zustand <math>|B\rangle</math> eines Systems, das sich aus einem Teilsystem&nbsp;1 und einem Teilsystem&nbsp;2 zusammensetzt, gilt <math>\rho = | B\rangle \langle B|</math>. Bildet man die [[Partialspur]] über eines der beiden Systeme (z.&nbsp;B. System&nbsp;1), so erhält man den reduzierten Dichteoperator <math>\rho_{2}:=\text{Spur}_{1}{\rho}</math>. Betrachtet man nun das Quadrat des reduzierten Dichteoperators <math>\rho_{2}^2</math> und ist dieses ungleich <math>\rho_{2}</math>, so beschreibt der reduzierte Dichteoperator ein Gemisch<ref>Für reine Zustände besteht der Dichteoperator nur aus einem Projektor und ist somit [[idempotent]].</ref> und somit beschreibt <math>\rho</math> einen verschränkten Zustand. Denn bei einem verschränkten Zustand erzeugt die wiederholte Messung an einem System ein klassisches Gemisch von Zuständen im anderen System. Läge ein nicht-verschränkter Zustand vor, so würde die Messung an einem System den Zustand im anderen System nicht verändern.
Ob ein gegebener Zustand verschränkt ist, lässt sich mathematisch aus seiner Dichtematrix bestimmen. Hierzu gibt es verschiedene Verfahren, beispielsweise das [[Peres-Horodecki-Kriterium]] oder den Test, ob die [[Schmidt-Zerlegung]] des Zustandes mehr als einen Term hat.<ref>Peter Lambropoulos, David Petrosyan: ''Fundamentals of Quantum Optics and Quantum Information.'' ISBN 3-540-34571-X, S.&nbsp;247. [https://books.google.de/books?id=53bpU-41U8gC&lpg=PA247&dq=maximally+entangled+von+neumann+entropy&hl=de&pg=PA247#v=onepage&q=maximally%20entangled%20von%20neumann%20entropy&f=false Google Books.]</ref>
 
Für einen ''reinen'' verschränkten Zustand <math>|B\rangle</math> eines Systems, das sich aus einem Teilsystem&nbsp;1 und einem Teilsystem&nbsp;2 zusammensetzt, gilt <math>\rho = | B\rangle \langle B|</math>. Bildet man die [[Partialspur]] über eines der beiden Systeme (z.&nbsp;B. System&nbsp;1), so erhält man den reduzierten Dichteoperator <math>\rho_{2} := \text{Spur}_{1}{\rho}</math>. Betrachtet man nun das Quadrat des reduzierten Dichteoperators <math>\rho_{2}^2</math> und ist dieses ungleich <math>\rho_{2}</math>, so beschreibt der reduzierte Dichteoperator ein Gemisch<ref>Für reine Zustände besteht der Dichteoperator nur aus einem Projektor und ist somit [[idempotent]].</ref> und somit beschreibt <math>\rho</math> einen verschränkten Zustand. Denn bei einem verschränkten Zustand erzeugt die Messung an einem System ein klassisches Gemisch von Zuständen im anderen System aus Sicht aller Beobachter, die das Mess''ergebnis'' im ersten System nicht kennen. Läge ein nicht-verschränkter Zustand vor, so würde die Messung an einem System den Zustand im anderen System nicht verändern.
 
Für gemischte Zustände ist der Test auf Verschränkung in allgemeinen sehr schwierig ([[NP-Schwere|NP-schwer]]).<ref name="Gurv02">{{Literatur |Autor=L. Gurvits |Titel=Classical complexity and quantum entanglement |Sammelwerk=J. Comput. Syst. Sci. |Band=69 |Datum=2004 |Seiten=448–484 |arXiv=quant-ph/0201022 |DOI=10.1016/j.jcss.2004.06.003}}</ref> Teilweise Antworten liefern sogenannte [[Separabilität (Quantenmechanik)#Separabilitätskriterien|Separabilitätskriterien]], deren Verletzung eine hinreichende Bedingung für Verschränkung ist.


Alternativ zu obigem Test kann die [[Schmidt-Zerlegung]] durchgeführt werden. Falls die Schmidt-Zerlegung mehr als einen Term hat, ist der Zustand verschränkt.<ref>Peter Lambropoulos, David Petrosyan: ''Fundamentals of Quantum Optics and Quantum Information.'' ISBN 3-540-34571-X, S.&nbsp;247. [http://books.google.de/books?id=53bpU-41U8gC&lpg=PA247&dq=maximally%20entangled%20von%20neumann%20entropy&hl=de&pg=PA247#v=onepage&q=maximally%20entangled%20von%20neumann%20entropy&f=false Google Books.]</ref>
Verschränkung kann auch quantifiziert werden, das heißt, es gibt mehr und weniger stark verschränkte Zustände. Der Grad an Verschränkung wird durch ein [[Verschränkungsmaß]] ausgedrückt.


== Siehe auch ==
== Sonstiges ==
* [[Emergenz]]
[[Juan Maldacena]] und [[Leonard Susskind]] stellten 2013 die Hypothese der Äquivalenz von quantenverschränkten Teilchenpaaren (EPR) und speziellen [[Wurmloch|Wurmlöchern]] in der Quantengravitation auf als Möglichkeit der Lösung des [[Informationsparadoxon Schwarzer Löcher|Informationsparadoxons Schwarzer Löcher]] und dessen Verschärfung im ''firewall''-Paradoxon.<ref>J. Maldacena, L. Susskind: ''[https://arxiv.org/abs/1306.0533 Cool horizons for entangled black holes.]'' In: ''arXiv.org.'' 2013.</ref>
* [[Kohärenz (Physik)]]
* [[Dekohärenz]]
* [[Quanteninformation]]
* [[Quantenkanal]]


== Literatur ==
== Literatur ==
* Helmut Fink: ''Interpretation verschränkter Zustände: Die Quantenwelt&nbsp;– unbestimmt und nichtlokal?'' In: ''Physik in unserer Zeit.'' 4/2004, S.&nbsp;168–173.
* Helmut Fink: ''Die Quantenwelt&nbsp;– unbestimmt und nichtlokal? Interpretation verschränkter Zustände.'' In: ''Physik in unserer Zeit.'' 4/2004, S.&nbsp;168–173.
* [[Anton Zeilinger]]: ''Einsteins Schleier&nbsp;– Die neue Welt der Quantenphysik.'' Goldmann, München 2005, ISBN 3-442-15302-6.
* [[Anton Zeilinger]]: ''Einsteins Schleier&nbsp;– Die neue Welt der Quantenphysik.'' Goldmann, München 2005, ISBN 3-442-15302-6.
* Anton Zeilinger: ''Einsteins Spuk&nbsp;– Teleportation und weitere Mysterien der Quantenphysik.'' Bertelsmann, München 2005, ISBN 3-570-00691-3.
* Anton Zeilinger: ''Einsteins Spuk&nbsp;– Teleportation und weitere Mysterien der Quantenphysik.'' Bertelsmann, München 2005, ISBN 3-570-00691-3.
* Jürgen Audretsch: ''Verschränkte Systeme&nbsp;– die Quantenphysik auf neuen Wegen.'' Wiley-VCH, Weinheim 2005, ISBN 3-527-40452-X.
* Jürgen Audretsch: ''Verschränkte Systeme&nbsp;– die Quantenphysik auf neuen Wegen.'' Wiley-VCH, Weinheim 2005, ISBN 3-527-40452-X.
* Ingemar Bengtsson, Karol Zyczkowski: ''Geometry of quantum states&nbsp;– an introduction to quantum entanglement.'' Cambridge University Press, Cambridge 2006, ISBN 0-521-81451-0.
* Ingemar Bengtsson, Karol Zyczkowski: ''Geometry of quantum states&nbsp;– an introduction to quantum entanglement.'' Cambridge University Press, Cambridge 2006, ISBN 0-521-81451-0.
* Andreas Buchleitner et al.: ''Entanglement and decoherence&nbsp;– foundations and modern trends.'' Springer, Berlin 2009, ISBN 978-3-540-88168-1.
* Andreas Buchleitner u. a.: ''Entanglement and decoherence&nbsp;– foundations and modern trends.'' Springer, Berlin 2009, ISBN 978-3-540-88168-1.
* Howard Wiseman: [http://www.nature.com/news/physics-bell-s-theorem-still-reverberates-1.15435 ''Bell’s theorem still reverberates''.] Nature Comment, 19. Juni 2014.
* Ryszard Horodecki, Pawel Horodecki, Michal Horodecki, Karol Horodecki: ''Quantum Entanglement.'' Reviews of Modern Physics, Band 81, 2009, S. 865–942, [https://arxiv.org/abs/quant-ph/0702225 Arxiv]
* Howard Wiseman: ''[https://www.nature.com/news/physics-bell-s-theorem-still-reverberates-1.15435 Bell’s theorem still reverberates.]'' Nature Comment, 19. Juni 2014.


== Weblinks ==
== Weblinks ==
* H. Dambeck: [http://www.spiegel.de/wissenschaft/mensch/0,1518,572068,00.html ''Einsteins Spuk ist Tausende Male schneller als das Licht''.] [[Spiegel Online]] Wissenschaft.
* H. Dambeck: ''[https://www.spiegel.de/wissenschaft/mensch/mysterioeses-quantenphaenomen-einsteins-spuk-ist-tausende-male-schneller-als-das-licht-a-572068.html Einsteins Spuk ist Tausende Male schneller als das Licht.]'' [[Spiegel Online]] Wissenschaft.
* {{SEP|http://plato.stanford.edu/entries/qt-entangle/|Quantum Entanglement and Information|Jeffrey Bub}}.
* {{SEP|https://plato.stanford.edu/entries/qt-entangle/|Quantum Entanglement and Information|Jeffrey Bub}}.
* [https://www.heise.de/newsticker/meldung/Quantenkommunikation-im-All-192135.html ''Quantenkommunikation im All.''] Bei: ''heise.de.'' Kurzer Artikel.
* ''[https://www.heise.de/newsticker/meldung/Quantenkommunikation-im-All-192135.html Quantenkommunikation im All.]'' Bei: ''heise.de.'' Kurzer Artikel.
* [http://www.quantumlab.de/ Interaktive Realexperimente zur Verschränkung von Photonen.]
* ''[https://www.quantumlab.nat.fau.de/ Ein interaktiver Zugang zur faszinierenden Welt der Quantenphysik.]''
* [http://www.sciencedaily.com/releases/2013/12/131205142218.htm ''You Can’t Get Entangled Without a Wormhole: Physicist Finds Entanglement Instantly Gives Rise to a Wormhole.''] In: ''Science Daily.'' 5.&nbsp;Dezember 2013 (englisch).
* ''[https://www.sciencedaily.com/releases/2013/12/131205142218.htm You Can’t Get Entangled Without a Wormhole: Physicist Finds Entanglement Instantly Gives Rise to a Wormhole.]'' In: ''Science Daily.'' 5.&nbsp;Dezember 2013 (englisch).
* {{cite web|url=http://www.maschinenmarkt.vogel.de/verschraenkte-photonen-sollen-kommunikation-und-daten-schuetzen-a-624304/?cmp=nl-97&uuid=39EC6F49-AEAD-4CC1-9EFAD08340A8A2D4 |title=Verschränkte Photonen sollen Kommunikation und Daten schützen |date=2017-07-19|author=Rebecca Vogt |publisher=Maschinenmarkt |accessdate=2017-07-22}}
* {{cite web |url=https://www.maschinenmarkt.vogel.de/verschraenkte-photonen-sollen-kommunikation-und-daten-schuetzen-a-624304/?cmp=nl-97&uuid=39EC6F49-AEAD-4CC1-9EFAD08340A8A2D4 |title=Verschränkte Photonen sollen Kommunikation und Daten schützen |date=2017-07-19 |author=Rebecca Vogt |publisher=Maschinenmarkt |accessdate=2021-12-19}}


== Einzelnachweise und Anmerkungen ==
== Einzelnachweise und Anmerkungen ==
Zeile 129: Zeile 138:


{{SORTIERUNG:Quantenverschrankung}}
{{SORTIERUNG:Quantenverschrankung}}
[[Kategorie:Quantenphysik]]
[[Kategorie:Quantenphysik]]

Aktuelle Version vom 24. Januar 2022, 07:55 Uhr

Von Verschränkung spricht man in der Quantenphysik, wenn ein zusammengesetztes physikalisches System, z. B. ein System mit mehreren Teilchen, als Ganzes betrachtet einen wohldefinierten Zustand einnimmt, ohne dass man auch jedem der Teilsysteme einen eigenen wohldefinierten Zustand zuordnen kann.

Im Bereich der klassischen Physik kann es dieses Phänomen nicht geben. Dort sind zusammengesetzte Systeme stets separabel, das heißt, jedes Teilsystem hat zu jeder Zeit einen bestimmten Zustand, der sein jeweiliges Verhalten bestimmt, wobei die Gesamtheit der Zustände der einzelnen Teilsysteme und deren Zusammenwirken das Verhalten des Gesamtsystems vollständig erklärt. In einem quantenphysikalisch verschränkten Zustand des Systems besetzen hingegen die Teilsysteme mehrere ihrer möglichen Zustände nebeneinander, wobei jedem dieser Zustände eines Teilsystems ein anderer Zustand der übrigen Teilsysteme zugeordnet ist. Um das Verhalten des Gesamtsystems richtig erklären zu können, muss man alle diese nebeneinander bestehenden Möglichkeiten zusammen betrachten. Dennoch zeigt jedes Teilsystem, wenn eine Messung an ihm durchgeführt wird, immer nur eine dieser Möglichkeiten, wobei die Wahrscheinlichkeit, dass gerade dieses Ergebnis auftritt, durch eine Wahrscheinlichkeitsverteilung bestimmt ist. Messergebnisse an mehreren verschränkten Teilsystemen sind miteinander korreliert, das heißt, je nach dem Ergebnis der Messung an einem Teilsystem liegt für die möglichen Messergebnisse an den anderen Teilsystemen eine veränderte Wahrscheinlichkeitsverteilung vor. Diese durch Quantenverschränkung erzeugten Korrelationen werden auch als Quantenkorrelationen bezeichnet.

Überblick

Verschränkte Zustände sind häufig. Ein verschränkter Zustand entsteht jedes Mal, wenn zwei Teilsysteme miteinander wechselwirken (z. B. miteinander kollidieren), und es danach verschiedene, aber aufeinander abgestimmte Möglichkeiten gibt, wie sie sich weiter verhalten (z. B. in welche Richtung sie nach dem Zusammenstoßen weiterfliegen). Alle diese Möglichkeiten haben nach der Quantenmechanik eine gewisse Wahrscheinlichkeit, mit der sie in entsprechend aufeinander abgestimmter Weise im Zustand des Gesamtsystems bis zum Moment der quantenmechanischen Messung vertreten sein müssen.

Die Verschränkung wird beendet, sobald man eines der Teilsysteme auf einen bestimmten seiner Zustände festlegt. Dann geht sofort auch ein anderes Teilsystem, das durch die Verschränkung mit dem ersten Teilsystem verknüpft war, in denjenigen Zustand über, der dem durch die Beobachtung festgestellten Zustand des ersten Teilsystems zugeordnet war. Der Zustand des Gesamtsystems zeigt dann keine Verschränkung mehr, denn beide Teilsysteme für sich betrachtet sind nun in einem je eigenen bestimmten Zustand.

Als weiteres Beispiel neben dem Zustand nach einem Stoßprozess sei der Grundzustand des Wasserstoffatoms genannt, in dem sich die Spins von Elektron und Proton zum Atomspin Null addieren. Die beteiligten Zustände der beiden Teilchen sind die, in denen sie ihren Spin parallel bzw. antiparallel zur z-Richtung ausgerichtet haben. Im Grundzustand des Atoms findet man für das Elektron wie für das Proton beide Zustände mit gleicher Wahrscheinlichkeit. Legt man durch eine Messung im Magnetfeld den Spin des Elektrons auf eine dieser Möglichkeiten fest, z. B. auf die (+z)-Richtung, dann erhält der Spin des Protons definitiv auch einen wohlbestimmten Zustand – und zwar den in (−z)-Richtung, was durch eine nachfolgende Messung am Proton bestätigt werden kann. Der Zustand des Atoms ist danach aber ein anderer, nicht verschränkter Zustand, der wiederum als eine Überlagerung der beiden verschränkten Zustände mit Atomspin Null und Eins, jeweils mit gleicher Amplitude, dargestellt werden kann.

Das heißt, wenn man ein verschränktes System in einem gegebenen Zustand hat und durch gleichzeitige Messungen an mehreren Teilsystemen deren Zustand feststellt, dann liegen die Messergebnisse für jedes einzelne Teilsystem nicht fest, sind aber korreliert. Die Unbestimmtheit der Zustände der verschränkten Teilsysteme vor der Beobachtung zusammen mit diesen Korrelationen zwischen den zusammengehörigen Beobachtungsergebnissen stellt eines der größten Probleme für das Verständnis der Quantenphysik dar. Albert Einstein, der dies im Jahr 1935 als erster in einem Gedankenexperiment theoretisch klar herausarbeitete (siehe EPR-Paradoxon), schloss daraus, dass die Quantenmechanik noch kein zutreffendes Bild von der physikalischen Realität geben könne, denn an eine – so wörtlich – „spukhafte Fernwirkung“, mit der die Messung an einem Teilsystem das Ergebnis der Messung am anderen beeinflussen könnte, um die Korrelationen zu erzeugen, wollte er nicht glauben.

Erklärungsansätze

Die durch Verschränkung verursachten Korrelationen sind mittlerweile durch viele Experimente nachgewiesen. Sie sind unabhängig davon, wie weit die Orte, an denen die Messungen an den Teilsystemen vorgenommen werden, voneinander entfernt sind und in welchem zeitlichen Abstand die Messungen erfolgen. Das gilt auch dann, wenn die Messungen so weit voneinander entfernt sind und so schnell nacheinander (oder sogar gleichzeitig) durchgeführt werden, dass das Messergebnis an einem Teilchen den Zustand des anderen auf keinem physikalischen Weg beeinflusst haben kann. Bei bestimmten Experimenten sind die Korrelationen so stark, dass sie prinzipiell von keiner Theorie erklärt werden können, die wie die klassische Physik auf dem physikalischen Prinzip des „lokalen Realismus“ aufbaut, das heißt, dass jedes Teilsystem immer einen wohldefinierten Zustand hat, auf den ein anderes räumlich entferntes Teilsystem nur mit Lichtgeschwindigkeit einwirken kann. Damit wird nach der Bellschen Ungleichung auch ausgeschlossen, dass eine solche lokal-realistische Theorie mit hypothetischen zusätzlichen verborgenen Variablen das Phänomen der Quantenkorrelation beschreiben könnte.[1][2]

Die Tatsache, dass die Verschränkung (im Gegensatz zur klassischen Physik) keine lokal-realistische Interpretation zulässt, bedeutet, dass entweder die Lokalität aufgegeben werden muss (etwa wenn man der nichtlokalen Wellenfunktion selbst einen realen Charakter zubilligt – das geschieht insbesondere in Kollapstheorien, in der Viele-Welten-Interpretation oder der De-Broglie-Bohm-Theorie) oder das Konzept einer mikroskopischen Realität – oder aber beides.[3] Am radikalsten wird diese Abkehr vom klassischen Realismus in der Kopenhagener Deutung vertreten; nach dieser Interpretation, die bei den Physikern seit Jahrzehnten als Standard gilt, ist die Quantenmechanik nicht „realistisch“ (da eine Messung nicht einen Zustand feststellt, wie er vor der Messung vorlag, sondern den Zustand präpariert, der nach der Messung vorliegt) und im engeren Sinne auch nicht „lokal“ (weil der Zustand $ |\psi \rangle $ die Wahrscheinlichkeitsamplituden für alle Orte im Raum gleichzeitig festlegt, zum Beispiel durch die Wellenfunktion $ \psi (x,y,z) $).

Geschichte

Die Verschränkung und ihre Folgen gehören zu denjenigen Konsequenzen der Quantenmechanik, die zum klassischen (Alltags-)Verständnis besonders deutlich im Widerspruch stehen, und haben damit den meisten Widerstand gegen diese Theorie als ganze hervorgerufen. Albert Einstein, Boris Podolsky und Nathan Rosen formulierten 1935 den EPR-Effekt, nach dem die Quantenverschränkung zur Verletzung des klassischen Prinzips des lokalen Realismus führen würde, was von Einstein in einem berühmten Zitat als „spukhafte Fernwirkung“ („spooky action at a distance“) bezeichnet wurde. Jedoch konnten die Vorhersagen der Quantenmechanik durch Experimente höchst erfolgreich belegt werden.[4][5]

Viele Wissenschaftler führten dies irrtümlicherweise auf noch unbekannte, deterministische „verborgene Variablen“ zurück, die sowohl dem lokalen Realismus unterworfen seien als auch alle Quantenphänomene erklären könnten. Doch 1964 zeigte John Stewart Bell theoretisch, dass man diese Frage experimentell entscheiden kann. Nach der Bellschen Ungleichung können die Korrelationen durch Quantenverschränkung stärker sein als mit einer beliebigen lokal-realistischen Theorie mit verborgenen Variablen zu erklären wäre. Dies wurde durch Experimente bestätigt, sodass die Quantenverschränkung heute als physikalisches Phänomen anerkannt ist (bis auf wenige Abweichler). Von Bell stammt auch die Veranschaulichung von Verschränkung und EPR-Effekt anhand des Vergleichs mit „Bertlmanns Socken“.

2008 wurde von der Gruppe um Nicolas Gisin in einem Experiment überdies eine untere Grenze für die Geschwindigkeit einer angenommenen „spukhaften Fernwirkung“ gesetzt: Demnach müssten zwei Photonen, die bezüglich der Polarisation verschränkt waren, mit wenigstens 10.000-facher Lichtgeschwindigkeit kommunizieren, wenn sie denn das Messergebnis der Polarisation an einem Photon an das andere senden würden.[6] So eine Kommunikation würde der Relativitätstheorie eklatant widersprechen und unter anderem bedeuten, dass Zeitschleifen möglich sind.

Keine überlichtschnelle Informationsübertragung

Die Korrelationen durch Verschränkung verletzen nicht die Relativitätstheorie. Zwar liegt immer die Interpretation nahe, die Korrelationen könnten nur durch eine überlichtschnelle Wechselwirkung der verschränkten Teilsysteme zustande kommen. Es handelt sich aber nicht um eine Wechselwirkung, denn hierbei kann keine Information übertragen werden. Die Kausalität ist somit nicht verletzt. Dafür gibt es folgende Gründe:

  • Quantenmechanische Messungen sind probabilistisch, das heißt nicht streng kausal.
  • Das No-Cloning-Theorem verbietet die statistische Überprüfung verschränkter Quantenzustände, ohne dass diese dabei verändert werden.
  • Das No-Communication-Theorem besagt, dass Messungen an einem quantenmechanischen Teilsystem nicht benutzt werden können, um Informationen zu einem anderen Teilsystem zu übertragen.

Zwar ist Informationsübertragung durch Verschränkung allein nicht möglich, wohl aber mit mehreren verschränkten Systemen in Verbindung mit einem klassischen Informationskanal, siehe Quantenteleportation. Trotz dieses Namens können wegen des benötigten klassischen Informationskanals keine Informationen schneller als das Licht übertragen werden.

Besondere verschränkte Systeme

Biologische Systeme

Graham Fleming, Mohan Sarovar und andere (Berkeley) meinten, mit Femtosekunden-Spektroskopie nachgewiesen zu haben, dass im Photosystem-Lichtsammelkomplex der Pflanzen eine über den gesamten Komplex reichende stabile Verschränkung von Photonen stattfindet, was die effiziente Nutzung der Lichtenergie ohne Wärmeverlust erst möglich mache. Bemerkenswert sei daran unter anderem die Temperaturstabilität des Phänomens.[7][8] Kritik daran äußerten Sandu Popescu, Hans J. Briegel und Markus Tiersch.[9]

Stuart Hameroff und Roger Penrose schlagen zur Erklärung der erstaunlichen Leistungsfähigkeit des Gehirns vor, dass diese unter anderem auf Korrelationen und Verschränkung zwischen elektronischen Zuständen der in den Neuronen häufigen Mikrotubuli beruht.[10] Dem wurde mit physikalischer Begründung widersprochen.[11]

Makroskopische Systeme

Forschern gelang es, die Bewegung eines millimetergroßen mechanischen Oszillators mit einem separaten, weit entfernten Spin-System einer Wolke von Atomen zu verschränken.[12][13]

Erzeugung verschränkter Photonen

Bei Photonen bezieht sich die Verschränkung meist auf die Polarisation. Misst man die Polarisation des einen Photons, ist dadurch die Polarisation des anderen Photons festgelegt (z. B. bei linearer Polarisation um 90° gedreht). Jedoch können sie auch hinsichtlich der Flugrichtung verschränkt sein.

Die beiden Gammaquanten der Vernichtungsstrahlung bilden ein verschränktes Photonenpaar. Die Verschränkung betrifft sowohl die Flugrichtungen, die einzeln beliebig sein können, aber zusammen (im Schwerpunktsystem) einander exakt entgegengesetzt sind, als auch die Zirkularpolarisation – bei jedem der Photonen rechts und links gleich häufig, aber bei beiden Photonen immer beide rechts oder beide links. Die Richtungsverschränkung ist Grundlage der verbreiteten medizinischen Anwendung in der Positronen-Emissions-Tomographie (PET).

Verschränkte niederenergetische Photonen können durch die parametrische Fluoreszenz (parametric down-conversion) in nichtlinear optischen Kristallen erzeugt werden. Dabei wird aus einem Photon höherer Energie im Kristall ein verschränktes Paar von Photonen mit je halber Energie erzeugt. Die Richtungen, in die diese beiden Photonen abgestrahlt werden, sind stark miteinander und mit der Richtung des eingestrahlten Photons korreliert, sodass man die so erzeugten verschränkten Photonen gut für Experimente (und andere Anwendungen) nutzen kann (siehe z. B. Quantenradierer).

Bestimmte Atomsorten kann man mit Hilfe eines Lasers derart anregen, dass sie bei ihrer Rückkehr in den Grundzustand ebenfalls ein Paar polarisationsverschränkter Photonen abstrahlen. Diese werden jedoch nahezu unkorreliert in beliebiger Raumrichtung abgestrahlt, sodass diese nicht sehr effizient genutzt werden können.

Anwendungen

  • Bei jeder quantenmechanischen Messung wird das Messobjekt mit dem Messapparat verschränkt, um an dessen „Zeigerstellung“ den Zustand des Messobjekts ablesen zu können.
  • Beim Quantenradierer und Delayed-Choice-Experiment wird der Anschein erweckt, Informationen könnten retrokausal gelöscht werden.
  • Quantenschlüsselaustausch: Sicherer Austausch von Schlüsseln zwischen zwei Kommunikationspartnern zur verschlüsselten Übermittlung von Information. Der Austausch ist sicher, weil es nicht möglich ist, ihn ohne bemerkbare Störung abzuhören. Die austauschenden Partner können daher ein eventuelles „Mithören“ beim Schlüsselaustausch bemerken. Während der gewöhnliche Quantenschlüsselaustausch auch ohne Verschränkung möglich ist (z. B. mit dem BB84-Protokoll), erlaubt die Verwendung verschränkter Zustände einen sicheren Quantenschlüsselaustausch selbst dann, wenn man den verwendeten Geräten nicht vertraut (man spricht von geräteunabhängiger bzw. device-independent Sicherheit).[14]
  • Quantencomputer: Bei Berechnungen mittels Qubits auf einem Quantencomputer spielt die Verschränkung der Qubits eine zentrale Rolle. Einerseits beruht der wesentliche Vorteil von Quantencomputern (dass manche Probleme durch Quantenalgorithmen mit sehr viel weniger Rechenschritten gelöst werden können als auf konventionellen Computern) auf der Verschränkung vieler Qubits im Verlauf der Rechnung.[15][16] Andererseits verwenden auch die Verfahren zur Quantenfehlerkorrektur, die nötig sind, um die Quantenrechnungen vor Dekohärenz zu schützen, verschränkte Zustände.[17]
  • In der Quantenmetrologie werden verschränkte Zustände vieler Teilchen verwendet, um die mit begrenzten Ressourcen (Zahl der verwendeten Teilchen) mögliche Messgenauigkeit zu erhöhen.[18]

Mathematische Betrachtung

Die folgende Diskussion setzt Kenntnisse in der Bra-Ket-Notation und der allgemeinen mathematischen Formulierung der Quantenmechanik voraus.

Es seien zwei Systeme $ A $ und $ B $ mit den Hilbert-Räumen $ {\mathcal {H}}_{\rm {A}} $ und $ {\mathcal {H}}_{\rm {B}} $ gegeben. Der Hilbert-Raum des zusammengesetzten Systems ist der Tensorproduktraum $ {\mathcal {H}}_{\rm {A}}\otimes {\mathcal {H}}_{\rm {B}} $. Das System $ A $ sei im reinen Zustand $ |\psi \rangle _{\rm {A}} $ und System $ B $ im reinen Zustand $ |\phi \rangle _{\rm {B}} $. Dann ist der Zustand des zusammengesetzten Systems ebenfalls rein und gegeben durch:

$ |\psi \rangle _{\rm {A}}\;|\phi \rangle _{\rm {B}} $

Reine Zustände, die sich in dieser Form schreiben lassen, nennt man separabel oder Produktzustände.

Wählt man Orthonormalbasen $ \{|i\rangle _{\rm {A}}\} $ und $ \{|j\rangle _{\rm {B}}\} $ der Hilbert-Räume $ {\mathcal {H}}_{\rm {A}} $ und $ {\mathcal {H}}_{\rm {B}} $, dann kann man die Zustände nach diesen Basen entwickeln und erhält mit komplexen Koeffizienten $ a_{i} $ und $ b_{j} $:

$ |\psi \rangle _{\rm {A}}\;|\phi \rangle _{\rm {B}}=\left(\sum _{i}a_{i}|i\rangle _{\rm {A}}\right)\left(\sum _{j}b_{j}|j\rangle _{\rm {B}}\right) $

Ein allgemeiner Zustand auf $ {\mathcal {H}}_{\rm {A}}\otimes {\mathcal {H}}_{\rm {B}} $ hat die Form:

$ \sum _{i,j}c_{ij}|i\rangle _{\rm {A}}\;|j\rangle _{\rm {B}} $

Die separablen Zustände von $ {\mathcal {H}}_{\rm {A}}\otimes {\mathcal {H}}_{\rm {B}} $ sind die, deren Koeffizienten die Darstellung $ c_{i,j}=a_{i}b_{j} $ erlauben, die also wie oben faktorisiert werden können. Ist ein Zustand nicht separabel, so nennt man ihn verschränkt.[19]

Zum Beispiel seien zwei Basisvektoren $ \{|0\rangle _{\rm {A}},|1\rangle _{\rm {A}}\} $ von $ {\mathcal {H}}_{\rm {A}} $ und zwei Basisvektoren $ \{|0\rangle _{\rm {B}},|1\rangle _{\rm {B}}\} $ von $ {\mathcal {H}}_{\rm {B}} $ gegeben. Dann ist der folgende Zustand, der sog. „Singulett-Zustand“, verschränkt:[20]

$ {1 \over {\sqrt {2}}}{\Big (}|0\rangle _{\rm {A}}|1\rangle _{\rm {B}}-|1\rangle _{\rm {A}}|0\rangle _{\rm {B}}{\Big )} $

Wenn das zusammengesetzte System in diesem Zustand ist, haben weder $ A $ noch $ B $ einen bestimmten Zustand, sondern ihre Zustände sind überlagert und die Systeme sind in diesem Sinne verschränkt.

Als quantenmechanische Messwerte können nur Eigenwerte hermitescher Operatoren auftreten. Seien nun also „Messoperatoren“ $ \Omega ^{(i)} $ in jedem der beiden Teilsysteme $ A $ und $ B $ gegeben, welche die folgenden beiden Eigenwertgleichungen erfüllen:

$ \Omega ^{(i)}|0\rangle _{(i)}=\lambda _{0}|0\rangle _{(i)}{\text{ und }}\Omega ^{(i)}|1\rangle _{(i)}=\lambda _{1}|1\rangle _{(i)} $

Durch das Tensorprodukt mit dem Einsoperator $ I $ kann man mit obigen Messoperatoren der Teilsysteme einen Operator auf dem Tensorproduktraum erzeugen, wobei das System, an dem gemessen wird, dann im Subskript notiert ist:

$ \Omega _{A}=\Omega ^{(A)}\otimes I^{(B)}{\text{ bzw. }}\Omega _{B}=I^{(A)}\otimes \Omega ^{(B)} $

Man nehme an, Alice beobachte System $ A $, Bob System $ B $. Wenn Alice die Messung $ \Omega _{\rm {A}} $ durchführt, können mit gleicher Wahrscheinlichkeit zwei Ergebnisse auftreten:[21]

  1. Alice misst $ \lambda _{0} $, und der Zustand des Systems kollabiert zu $ |0\rangle _{\rm {A}}|1\rangle _{\rm {B}}. $
  2. Alice misst $ \lambda _{1} $, und der Zustand kollabiert zu $ |1\rangle _{\rm {A}}|0\rangle _{\rm {B}}. $

Im ersten Fall kann (oder konnte) jede Messung $ \Omega _{\rm {B}} $ durch Bob immer nur $ \lambda _{1} $ ergeben, im zweiten Fall immer nur $ \lambda _{0} $. Also wurde der Zustand des Systems durch die von Alice durchgeführte Messung verändert, auch wenn $ A $ und $ B $ räumlich getrennt sind. Hier liegt das EPR-Paradoxon begründet, und auch die sog. Quantenteleportation.

Das Ergebnis von Alices Messung ist zufällig, sie kann nicht den Zustand bestimmen, in den das System kollabiert, und kann daher durch Handlungen an ihrem System keine Informationen zu Bob übertragen. Eine zunächst möglich scheinende Hintertür: Sollte Bob mehrere exakte Duplikate der Zustände machen können, die er empfängt, könnte er auf statistischem Weg Informationen sammeln – das No-Cloning-Theorem beweist aber die Unmöglichkeit des Klonens von Zuständen. Daher wird – wie oben erwähnt – die Kausalität nicht verletzt.

Der Grad der Verschränkung eines Zustandes wird durch die Von-Neumann-Entropie $ S=-{\text{tr}}(\rho _{\text{red}}\ln(\rho _{\text{red}})) $ des reduzierten Dichteoperators des Zustandes gemessen. Die Von-Neumann-Entropie des reduzierten Dichteoperators eines unverschränkten Zustandes ist null. Dagegen ist die Von-Neumann-Entropie eines reduzierten Dichteoperators eines maximal verschränkten Zustandes (wie z. B. eines Bell-Zustandes) maximal.[22]

Hier sei noch darauf hingewiesen, dass es neben den oben besprochenen verschränkten reinen Zuständen (denen die reinen Produktzustände – ohne Verschränkung – gegenüberstehen) die verschränkten gemischten Zustände gibt (denen die gemischten Produktzustände – ohne Verschränkung – gegenüberstehen).

Test auf Verschränkung

Ob ein gegebener Zustand verschränkt ist, lässt sich mathematisch aus seiner Dichtematrix bestimmen. Hierzu gibt es verschiedene Verfahren, beispielsweise das Peres-Horodecki-Kriterium oder den Test, ob die Schmidt-Zerlegung des Zustandes mehr als einen Term hat.[23]

Für einen reinen verschränkten Zustand $ |B\rangle $ eines Systems, das sich aus einem Teilsystem 1 und einem Teilsystem 2 zusammensetzt, gilt $ \rho =|B\rangle \langle B| $. Bildet man die Partialspur über eines der beiden Systeme (z. B. System 1), so erhält man den reduzierten Dichteoperator $ \rho _{2}:={\text{Spur}}_{1}{\rho } $. Betrachtet man nun das Quadrat des reduzierten Dichteoperators $ \rho _{2}^{2} $ und ist dieses ungleich $ \rho _{2} $, so beschreibt der reduzierte Dichteoperator ein Gemisch[24] und somit beschreibt $ \rho $ einen verschränkten Zustand. Denn bei einem verschränkten Zustand erzeugt die Messung an einem System ein klassisches Gemisch von Zuständen im anderen System aus Sicht aller Beobachter, die das Messergebnis im ersten System nicht kennen. Läge ein nicht-verschränkter Zustand vor, so würde die Messung an einem System den Zustand im anderen System nicht verändern.

Für gemischte Zustände ist der Test auf Verschränkung in allgemeinen sehr schwierig (NP-schwer).[25] Teilweise Antworten liefern sogenannte Separabilitätskriterien, deren Verletzung eine hinreichende Bedingung für Verschränkung ist.

Verschränkung kann auch quantifiziert werden, das heißt, es gibt mehr und weniger stark verschränkte Zustände. Der Grad an Verschränkung wird durch ein Verschränkungsmaß ausgedrückt.

Sonstiges

Juan Maldacena und Leonard Susskind stellten 2013 die Hypothese der Äquivalenz von quantenverschränkten Teilchenpaaren (EPR) und speziellen Wurmlöchern in der Quantengravitation auf als Möglichkeit der Lösung des Informationsparadoxons Schwarzer Löcher und dessen Verschärfung im firewall-Paradoxon.[26]

Literatur

  • Helmut Fink: Die Quantenwelt – unbestimmt und nichtlokal? Interpretation verschränkter Zustände. In: Physik in unserer Zeit. 4/2004, S. 168–173.
  • Anton Zeilinger: Einsteins Schleier – Die neue Welt der Quantenphysik. Goldmann, München 2005, ISBN 3-442-15302-6.
  • Anton Zeilinger: Einsteins Spuk – Teleportation und weitere Mysterien der Quantenphysik. Bertelsmann, München 2005, ISBN 3-570-00691-3.
  • Jürgen Audretsch: Verschränkte Systeme – die Quantenphysik auf neuen Wegen. Wiley-VCH, Weinheim 2005, ISBN 3-527-40452-X.
  • Ingemar Bengtsson, Karol Zyczkowski: Geometry of quantum states – an introduction to quantum entanglement. Cambridge University Press, Cambridge 2006, ISBN 0-521-81451-0.
  • Andreas Buchleitner u. a.: Entanglement and decoherence – foundations and modern trends. Springer, Berlin 2009, ISBN 978-3-540-88168-1.
  • Ryszard Horodecki, Pawel Horodecki, Michal Horodecki, Karol Horodecki: Quantum Entanglement. Reviews of Modern Physics, Band 81, 2009, S. 865–942, Arxiv
  • Howard Wiseman: Bell’s theorem still reverberates. Nature Comment, 19. Juni 2014.

Weblinks

Einzelnachweise und Anmerkungen

  1. Patrick Fraser, Barry Sanders: Loophole-Free Bell Tests and the Falsification of Local Realism. In: Journal for Student Science and Technology. Band 10, Nr. 1, 2017, S. 23–31, doi:10.13034/jsst.v10i1.164, arxiv:1805.09289.
  2. Streng genommen gibt es noch eine dritte Möglichkeit, nämlich eine deterministische und lokal-realistische Theorie, in der aber aufgrund spezieller Anfangsbedingungen alles, insbesondere auch jede Messeinstellung in Bell-Experimenten durch die lokal-realistischen Variablen so vorherbestimmt ist, dass die Bell-Ungleichung verletzt wird. Dieser (kaum verfolgte) Ansatz geht auf John Bell zurück und wird als Superdeterminismus bezeichnet, vgl. z. B.
    Bells ursprünglich unveröffentlichter Aufsatz von 1975 erschien später in
  3. Casey Blood: A primer on quantum mechanics and its interpretations.
  4. Cole Miller: Principles of Quantum Mechanics. (PDF; 51,5 kB). Abgerufen am 19. Dezember 2021.
  5. Daniel Salart, Augustin Baas, Cyril Branciard, Nicolas Gisin, Hugo Zbinden: Testing the speed of ‘spooky action at a distance’. In: Nature. 454, 2008, S. 861–864 (Abstract).
  6. Berkeley Lab Press Release: Untangling the Quantum Entanglement Behind Photosynthesis: Berkeley scientists shine new light on green plant secrets.
  7. Mohan Sarovar, Akihito Ishizaki, Graham R. Fleming, K. Birgitta Whaley: Quantum entanglement in photosynthetic light harvesting complexes. In: Nature Physics. Band 6, 2010, S. 462, doi:10.1038/nphys1652, arxiv:0905.3787.
  8. Briegel, Popescu, Tiersch: A critical view of transport and entanglement in models of photosynthesis. In: Phil. Trans. R. Soc. A. Band 370, 2012, S. 3771, doi:10.1098/rsta.2011.02022011, arxiv:1104.3883.
  9. Stuart Hameroff, Roger Penrose: Consciousness in the universe. A review of the ‘Orch OR’ theory. In: Physics of life reviews. Band 11, Nr. 1, 2014, S. 39–78, doi:10.1016/j.plrev.2013.08.002.
  10. Jeffrey R. Reimers, Laura K. McKemmish, Ross H. McKenzie, Alan E. Mark, Noel S. Hush: The revised Penrose-Hameroff orchestrated objective-reduction proposal for human consciousness is not scientifically justified. Comment on “Consciousness in the universe: a review of the ‘Orch OR’ theory” by Hameroff and Penrose. In: Physics of life reviews. Band 11, Nr. 1, 2014, S. 103, doi:10.1016/j.plrev.2013.11.003.
  11. Quantum entanglement realized between distant large objects (en). In: phys.org. 
  12. Umesh Vazirani, Thomas Vidick: Fully Device-Independent Quantum Key Distribution. In: Phys. Rev. Lett. Band 113, Nr. 14, 2014, S. 140501, doi:10.1103/physrevlett.113.140501, arxiv:1210.1810.
  13. R. Jozsa and N. Linden: On the role of entanglement in quantum computational speed-up. In: Proc. R. Soc. A. Band 459, 2003, S. 2011–2032, doi:10.1098/rspa.2002.1097, arxiv:quant-ph/0201143.
  14. John Preskill: Quantum Computing in the NISQ era and beyond. In: Quantum. Band 2, 2018, S. 79, doi:10.22331/q-2018-08-06-79, arxiv:1801.00862.
  15. V. Giovannetti, S. Lloyd, L. Maccone: Advances in quantum metrology. In: Nature Phot. Band 5, 2011, S. 222–229, doi:10.1038/nphoton.2011.35, arxiv:1102.2318.
  16. Mit anderen Worten: Für die Koeffizientenmatrix $ C=(c_{i,j}) $ separabler Zustände $ \sum _{i,j}c_{ij}|i\rangle _{\rm {A}}\;|j\rangle _{\rm {B}} $ gilt $ \operatorname {rang} C=1 $, für diejenige verschränkter Zustände hingegen $ \operatorname {rang} C>1 $.
  17. Verschränkt wäre auch der sogenannte „mittlere Triplett-Zustand“, bei dem das Minus-Zeichen durch ein Plus-Zeichen ersetzt ist. Mathematisch gesehen ergibt sich nur mit dem Minuszeichen die einfachste („identische“) irreduzible Darstellung bei der Ausreduzierung des Tensorproduktes der Darstellungsräume zweier Einteilchensysteme.
  18. Anmerkung: Falls der Eigenwert $ a $ gemessen wurde, befindet sich das System im Zustand $ {\frac {{\hat {\mathbb {P} }}_{a}{\hat {\rho }}{\hat {\mathbb {P} }}_{a}}{\operatorname {Tr} ({\hat {\mathbb {P} }}_{a}{\hat {\rho }}{\hat {\mathbb {P} }}_{a})}} $. Für die Wahrscheinlichkeiten, einen Eigenwert eines Operators zu messen, gibt es ebenfalls ein Postulat, siehe dazu Dichteoperator#Eigenschaften.
  19. Naresh Chandra, Rama Ghosh: Quantum Entanglement in Electron Optics: Generation, Characterization, and Applications. Springer, 2013, ISBN 3-642-24070-4, S. 43. Google Books.
  20. Peter Lambropoulos, David Petrosyan: Fundamentals of Quantum Optics and Quantum Information. ISBN 3-540-34571-X, S. 247. Google Books.
  21. Für reine Zustände besteht der Dichteoperator nur aus einem Projektor und ist somit idempotent.
  22. L. Gurvits: Classical complexity and quantum entanglement. In: J. Comput. Syst. Sci. Band 69, 2004, S. 448–484, doi:10.1016/j.jcss.2004.06.003, arxiv:quant-ph/0201022.
  23. J. Maldacena, L. Susskind: Cool horizons for entangled black holes. In: arXiv.org. 2013.