Landésche Intervallregel

Landésche Intervallregel

Version vom 2. Mai 2015, 10:52 Uhr von imported>Kondephy (leerzeichen)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Die Landé’sche Intervallregel (nach dem deutschen Physiker Alfred Landé) ermöglicht in der Atomphysik die Abschätzung der Energiedifferenz zweier benachbarter Feinstruktur- oder Hyperfeinstruktur-Energieniveaus. Sie besagt, dass der Energieunterschied der Niveaus mit Quantenzahlen $ J $ und $ J-1 $ im Fall der Feinstruktur bzw. $ F $ und $ F-1 $ im Fall der Hyperfeinstruktur proportional zu $ J $ bzw. $ F $ ist.

In der Hyperfeinaufspaltung (rechts) des Wasserstoff-Atoms ist zu erkennen, dass die Energiedifferenz zwischen den Niveaus $ F=2 $ und $ F-1=1 $ zweimal größer ist, als die zwischen $ F=1 $ und $ F-1=0 $.

Feinstruktur

In einem Feinstruktur-Multiplett ist die Energie eines Niveaus mit Hauptquantenzahl $ n $, Bahndrehimpuls $ L $, Elektronen-Spin $ S $ und gesamtem Hüllendrehimpuls $ J $ durch folgende Formel gegeben:

$ \Delta E_{n,L,J}={\frac {a}{2}}\left(J(J+1)-L(L+1)-S(S+1)\right) $

Dabei ist $ a $ die LS-Kopplungs-Konstante, die atomspezifisch ist. Daraus folgt für die Energiedifferenz zweier Niveaus mit Gesamtdrehimpuls $ J $ und $ J-1 $: [1]

$ \Delta E_{\mathrm {FS} }=\Delta E_{n,L,J}-\Delta E_{n,L,J-1}=a\cdot J $

Hyperfeinstruktur

Für die Hyperfeinstruktur gilt Analoges, nur dass statt des Hüllendrehimpulses $ J $ der Gesamtdrehimpuls $ F $ betrachtet wird, der den Kernspin $ I $ mit einbezieht.[2]

$ \Delta E_{\mathrm {HFS} }=\Delta E_{n,J,I,F}-\Delta E_{n,J,I,F-1}=A\cdot F $

Dabei ist $ A $ die Hyperfeinstruktur-Kopplungskonstante.

Gültigkeit

Die Intervallregel ist für leichte Atome meist in guter Näherung erfüllt. Sie verliert ihre Gültigkeit generell sobald die Kopplung der beteiligten Drehimpulse nicht mehr als kleine Störung behandelt werden kann. Dies ist darauf zurückzuführen, dass die obige Formel für die Lage der Energieniveaus LS-Kopplung voraussetzt.[3] Die LS-Kopplung ist bei schweren Atomen nicht mehr gegeben. Aber auch bei leichten Atomen, wie beispielsweise dem Triplett-Zustand des leichtesten Mehrelektronen-Atoms Helium, kann die die Intervallregel aufgrund der Spin-Spin-Wechselwirkung der Elektronen verletzt sein.[4] Die Wechselwirkung des elektrischen Feldes der Hüllenelektronen mit einem nicht verschwindenen Quadropolmoments des Atomkerns kann ebenfalls Abweichungen von der Intervallregel hervorrufen.[5]

Einzelnachweise

  1. Ingolf V. Hertel, Claus-Peter Schulz: Atome, Moleküle und optische Physik 1 – Atomphysik und Grundlagen der Spektroskopie. Springer, Berlin/Heidelberg 2008, ISBN 978-3-540-30613-9, S. 223 f.
  2. Ingolf V. Hertel, Claus-Peter Schulz: Atome, Moleküle und optische Physik 1 – Atomphysik und Grundlagen der Spektroskopie. 1. Auflage. Springer, Berlin, Heidelberg 2008, ISBN 978-3-540-30613-9, S. 352.
  3. Gerhard Herzberg: Atomic Spectra and Atomic Structure. 2. Auflage. Dower Publications, New York 1944, S. 178 f.
  4. Wolfgang Demtröder: Experimentalphysik 3 – Kern-, Teilchen- und Astrophysik. 4. Auflage. Springer, Berlin/Heidelberg 2010, ISBN 978-3-642-03910-2, S. 215.
  5. Hermann Haken, Hans Christoph Wolf: Atom- und Quantenphysik – Einführung in die experimentellen und theoretischen Grundlagen. 7. Auflage. Springer, Berlin 2001, ISBN 3-540-67453-5, S. 379.