Das Schalenmodell ist ein Atommodell, bei dem die Elektronen den Atomkern in konzentrischen Schalen umgeben. Der Aufenthaltsort eines Elektrons wird durch eine Wahrscheinlichkeitsfunktion modelliert. Die Amplitude dieser Funktion an einem bestimmten Ort ist proportional zur Aufenthaltswahrscheinlichkeit des Elektrons an diesem Ort. Das Schalenmodell ist damit eine Vereinfachung des Orbitalmodells.
Nach diesem Modell sind die Elektronen in der Atomhülle in Schalen angeordnet, anschaulich etwa wie die Schalen einer Zwiebel. Jede Schale ist der räumliche Aufenthaltsbereich von Elektronen mit ähnlichen Bindungsenergien. Die innerste, dem Atomkern nächstgelegene Schale wird K-Schale genannt. Sie enthält maximal zwei Elektronen. Auf der nächsten Schale, der L-Schale finden maximal acht Elektronen Platz.
Die weiter außen liegenden Schalen können zwar mehr als acht Elektronen enthalten, bei den Hauptgruppen-Elementen spielen diese zusätzlichen Elektronen aber bezüglich der chemischen Eigenschaften so gut wie keine Rolle.
Mit dem Schalenmodell der Atome lassen sich verschiedene Eigenschaften der Elemente gut erklären, da jedes Atom seine Edelgaskonfiguration, acht Elektronen in der Außenschale, „anstrebt“. Beispiele:
1912 führte Charles Glover Barkla, Professor für Physik am King’s College der University of London, die Bezeichnungen K und L für die inneren Elektronenschalen ein, weil man schon die Bezeichnungen A, B etc. für die Absorptionslinien des Sonnenlichts benutzt hatte. Weil Barkla dachte, dass man noch viele Absorptionslinien finden würde, fing er mit der Bezeichnung der Elektronenschalen etwa in der Mitte des Alphabets an, bei K.
Es gibt Phänomene, die das atomare Schalenmodell nicht erklären kann. Dazu gehört vor allem die räumliche Gestalt der Moleküle. Warum hat z. B. das Methan (CH4) eine tetraederförmige Gestalt, oder warum ist das Wassermolekül gewinkelt? Diese Eigenschaften der Moleküle lassen sich mit dem VSEPR-Modell und/oder über Hybridorbitale deuten und mit Molekülorbitalen erklären.