Radialsymmetrie ist eine Form der Symmetrie, bei der das Objekt invariant gegenüber allen Rotationen (also allen Winkeln und allen Achsen durch die Objektmitte) ist. Für ein Bezugssystem ist also nur der Koordinatenursprung, nicht aber die Ausrichtung von Bedeutung, wenn man ein radialsymmetrisches Objekt beschreiben will.
Im dreidimensionalen Fall nennt man die Radialsymmetrie auch Kugelsymmetrie, da Kugeln (genauer: auch konzentrische Kombinationen von Kugeloberflächen) die einzigen radialsymmetrischen dreidimensionalen Objekte sind.
Physikalische Felder, die Radialsymmetrie aufweisen, werden Radialfelder genannt.
In der Physik spielen radialsymmetrische Felder eine besondere Rolle. Allen radialsymmetrischen Feldern ist gemein, dass sie invariant gegenüber linearen, längenerhaltenden Koordinatentransformationen sind. Je nachdem, ob es sich um Skalarfelder, Vektorfelder oder Tensorfelder handelt, gibt es auch andere Eigenschaften, um diese Felder eindeutig zu charakterisieren.
Ein Skalarfeld
Ein Vektorfeld
Dabei ist
Der Gradient eines radialsymmetrischen Skalarfeldes
ein radialsymmetrisches Skalarfeld. Sein Gradient, die Schwerebeschleunigung
ist das zugehörige Vektorfeld.