Lense-Thirring-Effekt

Lense-Thirring-Effekt

Version vom 28. September 2017, 23:09 Uhr von imported>Yukterez (→‎Quantifizierung: Gyrationsradius in Terms des metrischen Koeffizienten)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Der Lense-Thirring-Effekt, auch Frame-Dragging-Effekt, ist ein im Jahr 1918 von dem Mathematiker Josef Lense und dem Physiker Hans Thirring[1] vorhergesagter physikalischer Effekt, der sich aus der Allgemeinen Relativitätstheorie ergibt. Er fällt in die Klasse der gravitomagnetischen Effekte. Der Lense-Thirring-Effekt beschreibt den Einfluss einer rotierenden Masse auf das lokale Inertialsystem. Dies kann man sich vereinfacht so vorstellen, dass die rotierende Masse den Raum um sich herum wie eine zähe Flüssigkeit mitzieht. Dadurch wird die Raumzeit verdrillt.

Experimenteller Nachweis

LAGEOS

Derzeit wird noch diskutiert, ob den Wissenschaftlern um Ignazio Ciufolini von der Universität Lecce und Erricos Pavlis von der University of Maryland in Baltimore im Jahr 2004 der experimentelle Nachweis des Effektes gelungen ist. Sie vermaßen dafür die Bahnen der geodätischen Satelliten LAGEOS 1 und 2 präzise. Deren Position und Lage sollte von der sich drehenden Masse der Erde beeinflusst werden. Die Genauigkeit der Tests mit den LAGEOS-Satelliten ist derzeit umstritten, Schätzungen reichen von 10 %[2] bis 20–30 %[3][4][5] und sogar darüber hinaus. 2013 erschien ein Übersichtsartikel von G. Renzetti über Versuche, den Lense-Thirring-Effekt mit Erdsatelliten zu messen.[6]

Die beiden Satelliten wurden 1976 und 1992 in eine Umlaufbahn gebracht, um kleine Effekte auf der Erdoberfläche wie das Driften der Kontinente, nacheiszeitliche Hebungsvorgänge und jahreszeitliche Schwankungen der Erdrotation zu bestimmen. Ihre Position lässt sich mit Hilfe reflektierter Laserstrahlen auf 1 bis 3 cm genau messen, so dass die Verdrillung der Raumzeit mit den rund 400 kg schweren Erdtrabanten quantitativ bestimmt werden kann. Dabei bewegen sich gemäß der theoretischen Vorhersage der allgemeinen Relativitätstheorie die Verdrehungswinkel der Raumzeit durch die rotierende Erdmasse bei etwa 12 Millionstel Grad bzw. -39,2 Millibogensekunden pro Jahr. Wenn der Effekt tatsächlich existiert, so müssen die beiden Satelliten den gekrümmten Flugbahnen der verdrillten Raumzeit folgen.

Trotz möglicher Fehlerquellen durch das uneinheitliche Schwerefeld der Erde reichten die zentimetergenauen Positionsbestimmungen der LAGEOS-Satelliten nach Meinung der Experimentatoren aus, um den relativistischen Effekt nachweisen zu können.

Gravity Probe B

Ein weiteres Nachweis-Experiment wurde zwischen dem 28. August 2004 und dem 14. August 2005 mit Hilfe des NASA-Forschungssatelliten Gravity Probe B durchgeführt. Auch diesem Experiment ist mittlerweile, trotz einer unerwarteten Fehlerquelle, nach Ansicht der Experimentatoren der Nachweis des Lense-Thirring-Effekts gelungen. Bald wurde klar, dass die angestrebte Genauigkeit von 1 % der Effektgröße um mindestens einen Faktor 2 verfehlt worden war.[7] Die endgültige Auswertung ergab einen Wert, der bis auf 5 % der Vorhersage entsprach.[8] Die letzten Auswertungen (April 2011) der Daten ergaben eine erneute Bestätigung des Effektes.[9][10]

LARES

Im Februar 2012 startete an Bord der ersten Rakete vom Typ Vega die LARES-Mission mit dem primären Ziel der endgültigen Bestätigung des Effektes. Die Mission ist auf einen Betrieb bis 2016 ausgelegt.[11][veraltet] Die tatsächliche erreichbare Genauigkeit wird kontrovers diskutiert.[12][13][3][14][15][4][2][16][17][18][19][20]

Auswirkungen

Der Lense-Thirring-Effekt wird für die enorme Leuchtkraft von Quasaren verantwortlich gemacht. Er ermöglicht dem Plasma der Akkretionsscheibe, das in das meist rotierende schwarze Loch im Zentrum des Quasars fällt, eine stabile Umlaufbahn knapp außerhalb des Schwarzschildradius. Dadurch kann das Plasma heißer werden als bei einem nicht rotierenden schwarzen Loch und folglich stärker strahlen.

Außerdem sind die zusammen mit dem Plasma verdrehten Magnetfelder wahrscheinlich verantwortlich für die starke Beschleunigung und Fokussierung der Jets.

Quantifizierung

Korotation von lokal nichtrotierenden und auf fixem r sitzenden Messbojen im Bezugssystem eines weit entfernten und relativ zu den Fixsternen stationären Beobachters.

Die Rotationswinkelgeschwindigkeit $ \omega $ des Raumes um eine rotierende und geladene zentrale Masse mit dem Spinparameter $ a $ und der elektrischen Ladung $ Q $ ergibt sich in Boyer-Lindquist-Koordinaten mit $ G=M=c=K=1 $ mit

$ \Omega ={\frac {{\rm {d}}\phi }{{\rm {d}}t}}=-{\frac {g_{t\phi }}{g_{\phi \phi }}}={\frac {a\left(2r-Q^{2}\right)}{\chi }} $

mit den Termen

$ \chi =\left(a^{2}+r^{2}\right)^{2}-a^{2}\ \sin ^{2}\theta \ \Delta $

$ \Sigma =r^{2}+a^{2}\ \cos ^{2}\theta $

$ \Delta =r^{2}-2\ r+a^{2}+Q^{2} $

$ t $ bezeichnet dabei die Zeitkoordinate eines Beobachters in weiter Entfernung von der rotierenden Masse. Der Winkel $ \theta $ bezeichnet dabei den Breitengrad mit dem Nullpunkt am Nordpol, $ a $ den kerr'schen Rotationsparameter der zentralen Masse, und $ r $ den radialen Abstand vom Schwerpunkt derselben.

Die lokale Geschwindigkeit mit der sich ein vor Ort befindlicher Beobachter gegen den Strudel der Raumzeit bewegen müsste um relativ zum weit entfernten Beobachter stationär zu bleiben ist

$ v_{\perp }=\omega \ {\bar {R}}\ \varsigma $

mit

$ {\bar {R}}={\sqrt {|g_{\phi \phi }|}}={\sqrt {\frac {\chi }{\Sigma }}}\ \sin \theta $

für den Gyrationsradius[21] und

$ \varsigma ={\frac {{\rm {d}}t}{{\rm {d}}\tau }}={\sqrt {|g^{tt}|}}={\sqrt {\frac {\chi }{\Delta \ \Sigma }}} $

für die gravitative Zeitdilatation, wobei $ \tau $ die Zeitkoordinate eines korotierenden, aber drehimpulsfreien Beobachters vor Ort[22] bezeichnet.

Ein weit entfernter stationärer Beobachter beobachtet hingegen eine Transversalgeschwindigkeit von

$ u_{\perp }=\omega \ {\sqrt {x^{2}+y^{2}}} $

an einer lokal ruhenden Messboje, wobei sich die kartesischen x- und y-Werte aus der Regel

$ x={\sqrt {r^{2}+a^{2}}}\sin \theta \ \cos \phi \ ,\ y={\sqrt {r^{2}+a^{2}}}\sin \theta \ \sin \phi \ ,\ z=r\cos \theta $

ergeben.

Literatur

  • Remo Ruffini, Costantino Sigismondi: Nonlinear gravitodynamics – the Lense–Thirring effect; a documentary introduction to current research. World Scientific, Singapore 2003, ISBN 981-238-347-6.
  • Bernhard Wagner: Gravitoelektromagnetismus und Lense-Thirring Effekt. Dipl.-Arb. Uni Graz, 2002.

Einzelnachweise

  1. Josef Lense, Hans Thirring: Über den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. In: Physikalische Zeitschrift. 19, 1918, S. 156–163.
  2. 2,0 2,1 I. Ciufolini, A. Paolozzi, E. C. Pavlis, J. C. Ries, R. Koenig, R. A. Matzner, G. Sindoni, H. Neumayer: General Relativity and John Archibald Wheeler (= Astrophysics and Space Science Library. Band 367). SpringerLink, 2010, Gravitomagnetism and Its Measurement with Laser Ranging to the LAGEOS Satellites and GRACE Earth Gravity Models, S. 371–434, doi:10.1007/978-90-481-3735-0_17.
  3. 3,0 3,1 L. Iorio: An Assessment of the Systematic Uncertainty in Present and Future Tests of the Lense-Thirring Effect with Satellite Laser Ranging. In: Space Science Reviews. Band 148, 2009, S. 363, doi:10.1007/s11214-008-9478-1, arxiv:0809.1373, bibcode:2009SSRv..148..363I.
  4. 4,0 4,1 L. Iorio, H. I. M. Lichtenegger, M. L. Ruggiero, C. Corda: Phenomenology of the Lense-Thirring effect in the solar system. In: Astrophysics and Space Science. Band 331, Nr. 2, 2011, S. 351, doi:10.1007/s10509-010-0489-5, arxiv:1009.3225, bibcode:2011Ap&SS.331..351I.
  5. L. Iorio, M. L. Ruggiero, C. Corda: Novel considerations about the error budget of the LAGEOS-based tests of frame-dragging with GRACE geopotential models. In: Acta Astronautica. Band 91, Nr. 10-11, 2013, S. 141, doi:10.1016/j.actaastro.2013.06.002.
  6. G. Renzetti: History of the attempts to measure orbital frame-dragging with artificial satellites. In: Central European Journal of Physics. Band 11, Nr. 5, Mai 2013, S. 531–544, doi:10.2478/s11534-013-0189-1.
  7. Statusbericht der Stanford University über Gravity Probe B (Frühling 2008)
  8. C. W. F. Everitt u. a.: Gravity Probe B: Final results of a space experiment to test general relativity. In: Physical Review Letters.
  9. Erde verbiegt die Raumzeit wie der Ball ein Laken. In: Welt online. 6. Mai 2011.
  10. GP-B STATUS UPDATE — May 4, 2011 einstein.stanford.edu, abgerufen am 13. Mai 2011.
  11. Webseite der A.S.I. zur LARES Mission
  12. L. Iorio: Towards a 1 % measurement of the Lense-Thirring effect with LARES? In: Advances in Space Research. Band 43, Nr. 7, 2009, S. 1148–1157, doi:10.1016/j.asr.2008.10.016, arxiv:0802.2031, bibcode:2009AdSpR..43.1148I.
  13. L. Iorio: Will the recently approved LARES mission be able to measure the Lense–Thirring effect at 1%? In: General Relativity and Gravitation. Band 41, Nr. 8, 2009, S. 1717–1724, doi:10.1007/s10714-008-0742-1, arxiv:0803.3278, bibcode:2009GReGr..41.1717I.
  14. Lorenzo Iorio: Recent Attempts to Measure the General Relativistic Lense-Thirring Effect with Natural and Artificial Bodies in the Solar System. In: PoS ISFTG. Band 017, 2009, arxiv:0905.0300, bibcode:2009isft.confE..17I.
  15. L. Iorio: On the impact of the atmospheric drag on the LARES mission. In: Acta Physica Polonica B. Band 41, Nr. 4, 2010, S. 753–765 (edu.pl).
  16. A. Paolozzi, I. Ciufolini, C. Vendittozzi: Engineering and scientific aspects of LARES satellite. In: Acta Astronautica. Band 69, Nr. 3–4, 2011, ISSN 0094-5765, S. 127–134, doi:10.1016/j.actaastro.2011.03.005.
  17. I. Ciufolini, A. Paolozzi, E. C. Pavlis, J. Ries, R. Koenig, G. Sindoni, H. Neumeyer: Testing Gravitational Physics with Satellite Laser Ranging. In: European Physical Journal Plus. Band 126, Nr. 8, 2011, S. 72, doi:10.1140/epjp/i2011-11072-2, bibcode:2011EPJP..126...72C.
  18. I. Ciufolini, E. C. Pavlis, A. Paolozzi, J. Ries, R. Koenig, R. Matzner, G. Sindoni, K. H. Neumayer: Phenomenology of the Lense-Thirring effect in the Solar System: Measurement of frame-dragging with laser ranged satellites. In: New Astronomy. Band 17, Nr. 3, 3. August 2011, S. 341–346, doi:10.1016/j.newast.2011.08.003, bibcode:2012NewA...17..341C.
  19. G. Renzetti: Are higher degree even zonals really harmful for the LARES/LAGEOS frame-dragging experiment? In: Canadian Journal of Physics. Band 90, Nr. 9, 2012, S. 883–888, doi:10.1139/p2012-081, bibcode:2012CaJPh..90..883R.
  20. G. Renzetti: First results from LARES: An analysis. In: New Astronomy. Band 23-24, 2013, S. 63–66, doi:10.1016/j.newast.2013.03.001, bibcode:2013NewA...23...63R.
  21. Scott A. Hughes: Nearly horizon skimming orbits of Kerr black holes, Seite 5 ff.
  22. Andrei & Valeri Frolov: Rigidly rotating ZAMO surfaces in the Kerr spacetime (arxiv:1408.6316v1)