Der Wirkungsgrad einer technischen Einrichtung oder Anlage ist eine Größe der Dimension Zahl und beschreibt in der Regel das Verhältnis der Nutzenergie $ E_{\mathrm {ab} } $ zur zugeführten Energie $ E_{\mathrm {zu} } $. Wenn keine Verfälschung durch gespeicherte Energie erfolgt, kann auch mit der Leistung gerechnet werden: Verhältnis der Nutzleistung $ P_{\mathrm {ab} } $ zur zugeführten Leistung $ P_{\mathrm {zu} } $. Üblicherweise wird der Wirkungsgrad mit dem griechischen Buchstaben $ \eta $ (eta) bezeichnet.
bzw.
$ P_{\mathrm {ab} } $ ist beispielsweise die mechanische Leistung, die ein Elektromotor an der Welle abgibt und $ P_{\mathrm {zu} } $ die elektrische Leistung, die dem Motor zugeführt wird. Das Verhältnis kann Werte zwischen 0 und 1 annehmen und kann in Prozent angegeben werden.
Neben der allgemeinen Definition haben sich auch weitere Bezeichnungen wie beispielsweise Nutzungsgrad oder Arbeitszahl etabliert, die je nach Fachbereich bestimmte Randbedingungen und Besonderheiten des Energieflusses in den betrachteten Systemen berücksichtigen. Nutzungsgrade und Arbeitszahlen beziehen sich immer auf einen Betrachtungszeitraum (meist ein Jahr), für den die Energien aufsummiert werden.
Die momentan aufgenommene oder abgegebene Leistung bzw. Energie kann unabhängig vom Wirkungsgrad sehr unterschiedlich sein, wenn Leistungs- bzw. Energieaufnahme und -abgabe zeitlich versetzt auftreten, etwa beim Auf- und Entladen eines Akkumulators, oder bei der Aufnahme solarer Energie durch Pflanzen und späterer Energiefreisetzung durch Verbrennen.
Der Gütegrad beschreibt im Gegensatz dazu nur die inneren Verluste einer Maschine und fällt meistens erheblich besser aus. Die Differenz von zugeführter und abgegebener Leistung wird als Verlustleistung bezeichnet.
Der theoretisch mögliche Wertebereich geht von 0 bis 1 bzw. 0 bis 100 %. Der höchste Wert (1 bzw. 100 %) kann in der Praxis bei Maschinen nicht erreicht werden, weil bei allen Vorgängen Energie durch Wärme oder Reibung in thermische Energie umgewandelt wird. Bei Wärmekraftmaschinen wird der Wirkungsgrad zusätzlich durch den Abgasverlust begrenzt.
Ein Wirkungsgrad größer 1 entspräche einem Perpetuum Mobile erster Art, was gegen den Energieerhaltungssatz verstößt. Vorrichtungen, die mehr Energie abgeben, als sie aufnehmen oder gespeichert haben, sind nicht möglich.
Bei Wärmekraftmaschinen kann der Wirkungsgrad niemals den idealen Wirkungsgrad des Carnot-Prozesses übersteigen.
Der mechanische Wirkungsgrad wird beispielsweise bei Getrieben oder Lagern angegeben und ist Teil des Gesamtwirkungsgrades einer Anlage (z. B. Antriebsstrang). Er berücksichtigt die Umwandlung eines Teils der mechanischen Eingangsleistung in die Erwärmung der Bauteile durch die Abwärme.
Der thermische Wirkungsgrad oder Prozesswirkungsgrad gibt das Verhältnis der gewonnenen mechanischen Leistung zum zugeführten Wärmestrom in einer Wärmekraftmaschine, z. B. einer Dampfturbine, an:
mit $ \eta _{\mathrm {th} }\, $ als dem thermischen Wirkungsgrad, mit $ P_{\mathrm {th} }\, $ als der gewonnenen mechanischen Leistung und mit $ {\dot {Q}} $ als dem zugeführten Wärmestrom.
Die Obergrenze für jeden thermischen Wirkungsgrad ist der Carnot-Wirkungsgrad:
wobei $ T_{n} $ die niedrigste und $ T_{h} $ die höchste im Prozess auftretende Temperatur in Kelvin ist.
Der feuerungstechnische Wirkungsgrad (FTW) gibt die Nutzung der aus der Verbrennung eines Brennstoffes entstehenden Wärme bei Nennleistung an. Er berücksichtigt lediglich den Wärmeverlust durch Abkühlung der Abgase auf Umgebungstemperatur. Eine Bewertung der energetischen Effizienz eines Wärmeerzeugers allein mit Hilfe dieses Abgasverlustes ist möglich, wenn alle anderen Verluste vernachlässigbar sind. Bis Ende des 20. Jahrhunderts war diese Näherungsrechnung für Heizungsanlagen üblich, heute wird der Anlagenwirkungsgrad bzw. Jahresnutzungsgrad betrachtet.
Der FTW ist die Differenz aus 1 (100 %) und dem Abgasverlust $ q_{a} $[1]
Moderne Anlagen steigern den Wirkungsgrad durch Absenken der Abgastemperaturen und durch Rückgewinnung der Kondensationswärme von Wasserdampf und Kohlenwasserstoffen. Sie nutzen den Brennwert eines Brennstoffes, während in alten Anlagen nur der Heizwert genutzt werden konnte. Es werden hohe Anforderungen an die Kaminanlage gestellt. Die Abgase müssen teilweise aktiv (z. B. Gebläse) abtransportiert werden, da sie nicht mehr warm genug sind, um selbst aufzusteigen. Der Schornstein ist korrosiven Angriffen durch die im kondensierten Wasser gelösten Verbrennungsrückstände ausgesetzt (Versottung). Unter bestimmten Bedingungen bildet sich zudem Teer, der aufgefangen und in die Verbrennung zurückgeführt werden muss.
Voll-Brennwertkessel, das Luft-Abgas-System oder die Beheizung von Nebenräumen nutzen bei Brennwertkesseln auch die latente Restwärme des Abgases unterhalb der Rücklauftemperatur des normalen Heizsystems. Dabei ist aber zu beachten, dass Gase eine geringe Wärmespeicherkapazität aufweisen und mitunter mit einer besseren Wärmedämmung des Hauses oder anderen Energiesparmaßnahmen „ums gleiche Geld“ gegebenenfalls ein höherer monetärer Nutzen erreicht werden könnte.
Der Wärmeaustrag infolge der Reaktionsenthalpien bei der Bildung von Stickoxiden bzw. die Reduzierung derselben durch Herabsetzung der Brenntemperaturen mithilfe von Porenbrennern oder katalytischen Brennern wird bei der (dem Stand der Technik nicht mehr entsprechenden und somit veralteten) Berechnungsmethode des feuerungstechnischen Wirkungsgrades nicht berücksichtigt.
Der Kesselwirkungsgrad hK (%) ist das Verhältnis von Nennwärmeleistung in Prozent der Nennwärmebelastung bei einer Messung im konstanten Dauerbetrieb bei Nennwärmeleistung. Er berücksichtigt wie der FTW auch den Abgasverlust, aber darüber hinaus auch den Wärmeverlust an die Umgebung des Aufstellungsraumes.
Der isentrope Wirkungsgrad wird meistens zur Beschreibung von Wärmekraftmaschinen benutzt.
Da thermische Energie nicht vollständig in andere Energieformen (z. B. elektrische Energie, mechanische Energie) umgewandelt werden kann, haben sich die Begriffe Anergie und Exergie entwickelt, die kennzeichnen, welcher Teil der thermischen Energie in Arbeit umgewandelt werden kann (Exergie) und welcher als thermische Energie verbleiben muss (Anergie). Es gilt damit
Der Wirkungsgrad der realen Wärmekraftmaschine ist immer kleiner oder gleich dem der idealen Wärmekraftmaschine, dem Carnot-Wirkungsgrad
Der isentrope Wirkungsgrad benutzt diesen Vergleichsprozess, um ihn mit dem realen Prozess zu vergleichen.
Insbesondere bei Wärmekraftwerken wird zwischen Brutto- und Nettowirkungsgrad unterschieden. Der Bruttowirkungsgrad bezieht sich auf die Bruttoleistung $ P_{\text{brutto}} $, also die elektrische Leistung ohne Berücksichtigung der Eigenverbraucher wie z. B. Speisewasserpumpe:
(Dabei sind $ {\dot {m}} $ der Massenstrom des zugeführten Brennstoffs und $ H_{\text{u}} $ der Heizwert des Brennstoffs.)
Der Nettowirkungsgrad hingegen bezieht sich auf die Nettoleistung $ P_{\mathrm {netto} } $, also die elektrische Leistung nach Abzug der Leistungsaufnahme der Eigenverbraucher $ P_{\mathrm {EB} } $:
Im deutschen Sprachraum wird für Kraftwerke der Nettowirkungsgrad angegeben, sofern nicht explizit etwa anderes genannt wird.[2]
Arbeiten mehrere Maschinen und Übertrager hintereinander, so werden deren einzelne Wirkungsgrade zum Gesamtwirkungsgrad $ \eta _{\text{gesamt}} $ der Anlage, dem Anlagenwirkungsgrad multipliziert.
Beispiel:
Gesamtwirkungsgrad: $ \eta _{\text{gesamt}}=0{,}40\cdot 0{,}99\cdot 0{,}95\cdot 0{,}90=\mathbf {0{,}34} $ oder 34 %.
Bei diesem Beispiel wird angenommen, dass die Energieübertragung zwischen den einzelnen Maschinen verlustfrei passiert. Ist dieses nicht der Fall, so müssen zusätzlich Wirkungsgrade der Energieübertragung mitgerechnet werden.
Wird die bei einem thermischen Umwandlungsprozess freiwerdende Abwärme weiter genutzt, zum Beispiel zur Luftvorwärmung, Ölvorwärmung oder Fernheizung, wie es bei Blockheizkraftwerken der Fall ist (siehe Tab. unten), so vergrößert sich der Wirkungsgrad der Anlage, da ein Teil der eigentlich für den Prozess verloren gegangenen Wärme trotzdem genutzt werden kann.
Der Jahresnutzungsgrad ist der jahresdurchschnittliche Anlagenwirkungsgrad über alle Betriebszyklen eines Wärmeerzeugers.
Er ermöglicht eine realistischere Kosten-Nutzen-Rechnung für Energiesparmaßnahmen, als dies mit der Näherungsrechnung des FTW möglich ist. Da auch durchschnittliche Häuser durch Verbesserung der Dämmung immer weniger Energie verbrauchen, wird die Betrachtung anderer Verluste immer wichtiger. Darunter fallen der Wärmeverlust der Wärmeerzeuger durch Abstrahlung, der Verlust durch Kondensation des Wassers im Brennstoff, benötigte Wärme durch häufige Starts der Heizung mit schlechtem Wirkungsgrad in der Startphase, niedrige Brennerlaufzeit durch zu groß dimensionierten Kessel.
Auch wenn moderne Einzelgeräte einer Heizungsanlage in der Regel einen Wirkungsgrad bei Nennleistung von über 90 % haben, beläuft sich der Jahresnutzungsgrad nur auf 60–80 %, die vom Heizkörper abgegeben werden.
Der Normnutzungsgrad bezieht die neue Technik der Brennwertkessel mit modulierender Leistungsregelung (Teillastbetrieb) durch gestufte Teillastbetriebspunkte von 12,8 %, 30,3 %, 38,8 %, 47,6 % und 62,6 % der Nennleistung mit ein.
Die Berechnung ist nach DIN 4702 Teil 8 festgelegt für
Maschinen mit Wirkungsgraden größer als 100 % werden als „Perpetuum Mobile erster Art“ bezeichnet. Solche Maschinen können aufgrund des Energieerhaltungssatzes nicht einmal theoretisch existieren. Falls in der Praxis trotzdem Wirkungsgrade über 100 % angegeben werden, so liegt die Ursache in dem Aufstellen einer unvollständigen Energiebilanzgleichung.
Ein Beispiel sind Brennwertkessel, bei denen teilweise heizwertbezogene Wirkungsgrade von über 100 % angegeben werden. Dabei wird unter „aufgewendeter Energie“ der Heizwert des Brennstoffes angesetzt. Der Heizwert berechnet sich jedoch aus der insgesamt freiwerdenden Wärme abzüglich der Verdampfungswärme für das bei der Verbrennung entstehende Wasser. Der Heizwert beinhaltet also nur einen Teil der gesamten Brennstoffenergie. Im Unterschied zum „konventionellen“ Heizkessel wird beim Brennwertkessel das Abgas soweit abgekühlt, dass das bei der Verbrennung verdampfte Wasser kondensiert. Die dabei freiwerdende Kondensationswärme kommt der Nutzenergie zugute, wurde aber anfangs nicht zur Eingangsenergie bilanziert.
Wird der Wirkungsgrad nicht auf Basis des Heizwertes, sondern auf Basis des Brennwertes des Brennstoffes berechnet, wird im Idealfall ein Wirkungsgrad von 100 % erreicht.
Wärmepumpen und Kälteanlagen – z. B. Klimaanlagen und Kühlschränke – funktionieren als umgekehrte Wärmekraftmaschine. In der Fachliteratur wird bei diesen Geräten neben dem Begriff „Wirkungsgrad“ die Leistungszahl ($ \varepsilon $) als Maß für die Effizienz verwendet. Die Herstellerangaben bezeichnen die Leistungszahl für Kälteanlagen allerdings oft als „Wirkungsgrad“. Die Wärmepumpe fördert die Wärmeenergie aus der Umwelt und bringt sie auf das gewünschte Temperaturniveau. Die dabei insgesamt bereitgestellte Wärmeleistung ist größer als die beim Verdichtungsprozess entstehende Wärmeleistung. Daher werden für diesen Prozess „Wirkungsgrade“ von über 100 % erreicht. Typische Werte liegen zwischen 300 % und 800 %, was einer Effizienz (= Leistungszahl) von 3 bis 8 entspricht. Zur Vermeidung von Verwechslungen wird der thermische Wirkungsgrad von Wärmepumpen und Kältemaschinen als COP (engl. Coefficient Of Performance) bezeichnet, der kleiner ist als der reziproke Carnot-Wirkungsgrad.
Maschine, Prozess | Eingesetzte Energie | Nutzenergie | Wirkungsgrad [%] |
---|---|---|---|
Bereitstellung von Nutzenergie | |||
|Kernkraftwerk | nuklear | elektrisch | 33 |
|GuD-Kraftwerk (Erdgas) | chemisch | elektrisch | 50–60 |
MHD-Generator | kinetisch | elektrisch | 30 (max.) |
|Solarzelle | elektromagnetisch (Sonnenstrahlung) | elektrisch | 5–27 (40) |
|Thermoelement (thermoelektrischer Generator) | thermisch | elektrisch | 3–8 |
|Wärmekraftwerk (Kohle) | chemisch | elektrisch | 25–50 |
|Wärmekraftwerk oder Motor mit Kraft-Wärme-Kopplung[Anm. 2] |
chemisch | elektrisch & (thermisch) **) | 30–40 & (50–60) |
|Wasserkraftwerk | mechanisch | elektrisch | 80–90 |
|Windkraftanlage[Anm. 3] | mechanisch | elektrisch | 50 (max.) |
|Elektrolyse von Wasser | elektrisch | chemisch | 70–80 |
|Thermolyse von Wasser | thermisch | chemisch | 90 (fiktiv) |
Maschinen und Geräte | |||
|Brennstoffzelle | chemisch | elektrisch | 20–60 |
|Dampfmaschine | chemisch | mechanisch | 3–44 |
|Stirlingmotor | thermisch | mechanisch | 10–66 |
|Verpuffungsstrahltriebwerk | chemisch | mechanisch | ? |
|Ottomotor (1000 PS im Bestpunkt) | chemisch | mechanisch | 35–40 |
|Dieselmotor (10.000 PS mit Turbo und Ladeluftkühlung) |
chemisch | mechanisch | 50 |
|Zweitakt-Schiffsdiesel (100.000 PS Auslass ventilgesteuert, mit Turbo und Ladeluftkühlung) |
chemisch | mechanisch | 55 |
|Elektromotor im Bestpunkt | elektrisch | mechanisch | 94–99,5 (> 90) |
|Fahrrad | mechanisch | mechanisch | 90 (min.) |
|Fahrraddynamo[Anm. 4] | mechanisch | elektrisch | 20–65 |
|Gasverdichter / Gasturbine[Anm. 5] | mechanisch | mechanisch | 90 (ca.) |
|Generator[Anm. 6] | mechanisch | elektrisch | 95–99,3 |
|Glühlampe (keine Halogenlampe)[Anm. 1] | elektrisch | elektromagn. (sichtb. Licht) | 3–5 |
|Hochspannungs-Gleichstrom-Übertragung[Anm. 7] | elektrisch | elektrisch | 95 |
|Lautsprecher[Anm. 8] | elektrisch | akustisch | 0,1–40, typ. 0,3 für Hifi |
|LED[Anm. 1] | elektrisch | elektromagn. (sichtb. Licht) | 5–25 |
|Schaltnetzteil (für el. Geräte) | elektrisch | elektrisch | 50–95 |
|Sendeanlage | elektrisch | elektromagnetisch (Radiowellen) | 30–80 |
|Thermoelement[Anm. 9] | thermisch | elektrisch | 3–8 |
|Transformator | elektrisch | elektrisch | 50–99,7 |
|Turbinentriebwerk (zivile Luftfahrt) | chemisch | mechanisch | 40 (max.) |
|Wechselrichter | elektrisch | elektrisch | 93–98 |
|Zahnradpumpe | mechanisch | mechanisch | 90 (max.) |
Wärmeproduktion | |||
|Gasherd (Haushalt)[Anm. 10] | chemisch | thermisch | 30–40 |
|Elektroherd (Haushalt)[Anm. 10] | elektrisch | thermisch | 50–60 |
|Gasheizung | chemisch | thermisch | 80–90 |
|Kohleofen (Haushalt) | chemisch | thermisch | 30–50 |
|Kohleofen (Industrie) | chemisch | thermisch | 80–90 |
|Lagerfeuer (Kochstelle)[Anm. 11] | chemisch | thermisch | 15 (max.) |
|Offener Kamin | chemisch | thermisch | 10–30 |
|Sonnenkollektor | elektromagnetisch (Sonnenstrahlung) | thermisch | 85 (max.) |
|Boiler,[3] Tauchsieder | elektrisch | thermisch | 80-98 |
Natürliche Prozesse | |||
|Photosynthese-Reaktion[Anm. 12] | elektromagnetisch (Sonnenlicht) | chemisch | 35 |
|Glühwürmchen (Leuchtreaktion) | chemisch | elektromagnetisch (Licht) | 95 (max.) |
|Mensch (Skelettmuskulatur)[Anm. 13] | chemisch | mechanisch | 0–30[4] |
Umfangreichere Prozesse | |||
|Kohleabbau (Abbau von Kohle und anschließende Verbrennung)[Anm. 14] |
chemisch | thermisch | 30–60 (?) |
|Photosynthese (Erzeugung von Biomasse und anschließende Verbrennung)[Anm. 15] |
elektromagnetisch (Sonnenlicht) | chemisch | 0,1–2,5 |
Anmerkungen:
**) Die Angabe eines Wirkungsgrades mit unterschiedlichen "Zielenergiearten", in diesem Fall elektrisch & thermisch, ist nicht sinnvoll, da diese Energiearten eine unterschiedliche "Wertigkeit" besitzen (siehe auch Entropie). So können elektrische und mechanische Energie zu 100 % in Wärme umgewandelt werden, in die andere Richtung geht das nur in den weiter oben erwähnten Grenzen. Beispiel: ein Blockheizkraftwerk mit Umwandlung in 30 % elektrische und 60 % thermische Energie würde nach dieser Betrachtung einen (falschen) "Wirkungsgrad" von 30 %+60 %=90 % ergeben. Mit einem GuD-Kraftwerk mit 60 % elektrischen Wirkungsgrad kann ich 30 % elektrische Energie zur Verfügung stellen und mit den verbleibenden 30 % elektrischer Energie eine Wärmepumpe betreiben. Mit einer Nutzungsziffer von 5 erhalte ich damit 150 % Wärme (z. B. für eine Heizung) – also die 2,5-fache Menge des Blockheizkraftwerkes.
Akustischer Wirkungsgrad η (Eta) eines Lautsprechers:
Pak = abgegebene akustische Leistung
Pe = zugeführte elektrische Leistung
Die Definition des akustischen Wirkungsgrads stimmt mit der des akustischen Umsetzungsgrads überein.
In den Lautsprecherdaten wird nie der sehr niedrige Wirkungsgrad in Prozent angegeben, sondern der Kennschalldruckpegel in dB/W/m (bzw. dB/(W·m) ), der unrichtig mit „Wirkungsgrad“ bezeichnet wird. Der Wirkungsgrad liegt zwischen 0,002 und 0,02 – also nur zwischen 0,2 und 2 Prozent. Er kann in den Kennschalldruck umgerechnet werden:
Wirkungsgrad | in Prozent | Kennschalldruckpegel |
---|---|---|
0,05 | 5 % | 99 dB |
0,02 | 2 % | 95 dB |
0,01 | 1 % | 92 dB |
0,005 | 0,5 % | 89 dB |
0,002 | 0,2 % | 85 dB |