Glasübergangstemperatur

Glasübergangstemperatur

Version vom 23. August 2017, 10:45 Uhr von 153.96.180.12 (Diskussion)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Beim Überschreiten der Glasübergangstemperatur Tg geht ein festes Glas oder Polymer in einen gummiartigen bis zähflüssigen Zustand über. Bei amorphen Metallen spricht man von der Glastemperatur und bei anorganisch-nichtmetallischen Gläsern von der Transformationstemperatur.

Bildung und Eigenschaften

Ein Glas bildet sich, wenn eine Flüssigkeit schneller abkühlt, als sich Kristallisationskeime bilden können. Dies geschieht besonders leicht bei asymmetrischen Molekülen und viskosen Flüssigkeiten. Gläser werden z. B. von den in der Umgangssprache darunter verstandenen anorganischen Gläsern – wie dem Fensterglas – gebildet, aber auch von organischen Gläsern wie z. B. amorphen Kunststoffen.

Bei Polymeren beruht der Glasübergang von der Schmelze in den festen Zustand auf dem "Einfrieren" von Kettensegmenten.[1]

Bei amorphen Kunststoffen trennt der Glasübergang den unterhalb liegenden, spröden energieelastischen Bereich (Glasbereich) vom oberhalb liegenden, weichen entropieelastischen Bereich (gummielastischer Bereich). Der Übergang in den Fließbereich (Bereich plastischer Verformung) ist nicht abrupt, sondern kontinuierlich.

Teilkristalline Kunststoffe (viele gebräuchliche Kunststoffe weisen einen kristallinen Anteil von 10 bis 80 % auf[2]) besitzen sowohl eine Glasübergangstemperatur, unterhalb derer die amorphe Phase einfriert (einhergehend mit Versprödung), als auch eine Schmelztemperatur, bei der sich die kristalline Phase auflöst. Die Schmelztemperatur trennt den entropieelastischen Bereich deutlich vom Fließbereich.

Ein Glasübergang ist kein Phasenübergang 1. Ordnung und daher auch nicht mit einer exakten Temperatur verknüpft, wie der Schmelzpunkt bei Kristallen. Je nachdem, auf welcher Zeit- und Längenskala bzw. Bewegungsmodus der molekularen Dynamik die verwendete Messmethode (s.u.) empfindlich ist, variiert der gefundene Wert systematisch. Exakterweise muss daher zu jeder Glasübergangstemperatur die verwendete Messmethode angegeben werden. Allerdings ist die Abweichung typischerweise nur einige Kelvin groß, da die Bewegungsmoden stark miteinander gekoppelt sind (alle frieren im gleichen Temperaturbereich ein).

Messung

Die Glasübergangstemperatur kann u. a. mit Hilfe folgender Methoden gemessen werden:

  • der Dynamisch-mechanischen Analyse (DMA); dabei wird eine starke Änderung des E- und G-Moduls sowie ein ausgeprägtes Maximum der Änderung der Dämpfung in einem engen Temperaturbereich beobachtet
  • der dynamischen Differenzkalorimetrie (DSC); dabei wird die Wärmekapazität Cp in Abhängigkeit von der Temperatur erfasst; die Wärmekapazitäten von flüssiger und glasartiger Phase unterscheiden sich, mit einem kontinuierlichen Übergang in der Nähe der Glasübergangstemperatur. Die festgestellte Glasübergangstemperatur hängt recht stark von der Heiz- bzw. Kühlrate ab: bei langsamer Aufheizung bzw. Abkühlung nähern sich die Werte aus dem Heiz- bzw. Kühlvorgang einander an, allerdings ist die Wärmekapazität bei kleiner Rate zunehmend schwierig zu messen.
  • der dielektrischen Relaxationsspektroskopie.
  • der Dilatometrie, da sich der Ausdehnungskoeffizient am Glasübergang ändert.

Einsatztemperatur von Kunststoffen

Ob ein Kunststoff oberhalb oder unterhalb seiner Glasübergangstemperatur verwendet werden kann, hängt von der Art des Kunststoffs ab (dabei ist zu beachten, dass die Glasübergangstemperatur eines Kunststoffes bzw. Elastomers mit seiner Vernetzungsdichte steigt, d. h. die Glasübergangstemperatur eines Duroplasts ist deutlich höher als die eines Thermoplasts):

  • Amorphe Thermoplaste können nur unterhalb der Glasübergangstemperatur eingesetzt werden. Die Verarbeitung erfolgt üblicherweise oberhalb derer.
  • Teilkristalline Thermoplaste werden sowohl unterhalb als auch oberhalb der Glasübergangstemperatur eingesetzt. Teilkristalline Thermoplaste, deren Glasübergangstemperatur höher ist als ihre Einsatztemperatur (z. B. Polyethylenterephthalat) sind eher steif und erweichen beim Glasübergang unterschiedlich stark (je nach Kristallinitätsgrad). Teilkristalline Thermoplaste, deren Glasübergangstemperatur unter der Einsatztemperatur liegt (z. B. Polyethylen), sind hingegen auch bei der Einsatztemperatur relativ weich und werden spröde, wenn die Glasübergangstemperatur unterschritten wird. In beiden Fällen ist ein Einsatz oberhalb der Schmelztemperatur nicht sinnvoll.
  • Elastomere werden grundsätzlich im gummielastischen Bereich, also oberhalb der Glastemperatur eingesetzt. Unterhalb der Glasübergangstemperatur verspröden sie stark, wodurch ein Einsatz nicht sinnvoll ist. So wurde beispielsweise als Ursache für das Unglück des Space Shuttle Challenger eine O-Ring-Dichtung aus Fluorelastomer ermittelt, die unterhalb ihrer Glasübergangstemperatur betrieben wurde, wo sie nur ungenügend elastisch war und folglich nicht dicht hielt. Die obere Temperaturgrenze dieser Materialien ist ihre jeweilige Zersetzungstemperatur.
  • Duroplaste werden sowohl unterhalb als auch oberhalb der Glasübergangstemperatur eingesetzt. Duroplaste, deren Glasübergangstemperatur unter der Raumtemperatur liegt, sind allerdings zu den Elastomeren zu zählen. Die obere Temperaturgrenze von Duroplasten ist ihre jeweilige Zersetzungstemperatur.

Einsatztemperatur von Gläsern

Glas wird in der Praxis nie oberhalb von Tg verwendet. Ist Glas Temperaturschwankungen ausgesetzt, deren Spitze oberhalb von Tg liegt, entstehen bei Abkühlung von diesen Spitzen Spannungen im Glas, die typischerweise schnell zu Bruch führen. Glas muss nach der Herstellung den Temperaturbereich um Tg durch definiert langsames Abkühlen durchschreiten. So werden Spannungen minimiert.

Glas oder Glasbauteile dürfen in der Regel nicht bis zu Tg belastet werden. Tg liegt innerhalb des sogenannten Transformationsbereiches dessen untere Grenze durch die untere Kühltemperatur beschrieben wird. Diese Temperatur stellt die theoretische Maximaltemperatur einer Glasart dar. In der Praxis liegt diese Temperatur immer 50–100 °C unterhalb von Tg.

Bei Borosilikatgläsern und Kalk-Natron-Gläsern liegt Tg um 500 °C, also deutlich höher als bei den meisten Kunststoffen. Bleigläser liegen etwas tiefer bei um 400 °C. Aluminosilikatgläser liegen deutlich höher bei etwa 800 °C.

Literatur

  • Hans-Georg Elias: Makromoleküle Band 2: Physikalische Strukturen und Eigenschaften. 6. Auflage. Wiley-VCH, Weinheim 2001, ISBN 3-527-29960-2, S. 452 (eingeschränkte Vorschau in der Google-Buchsuche).
  • Kapitel 5.2.4 Glasübergänge, In: Manfred Dieter Lechner, Klaus Gehrke, Eckhard H. Nordmeier: Makromolekulare Chemie: Ein Lehrbuch für Chemiker, Physiker, Materialwissenschaftler und Verfahrenstechniker, 4. überarbeitete und erweiterte Auflage, Springer Verlag 2009, ISBN 978-3764388904, S. 371f

Einzelnachweise

  1. Manfred D. Lechner: Makromolekulare Chemie: Ein Lehrbuch für Chemiker, Physiker, Materialwissenschaftler und Verfahrenstechniker. 4. Auflage. Birkhäuser, Basel 2009, ISBN 3-7643-8890-0, S. 371 (eingeschränkte Vorschau in der Google-Buchsuche).
  2. Gottfried Wilhelm Ehrenstein: Polymer-Werkstoffe: Struktur – Eigenschaften – Anwendung. 2. Auflage. Carl Hanser Verlag, München, Wien 1999, ISBN 3-446-21161-6, S. 173 (eingeschränkte Vorschau in der Google-Buchsuche).

Weblinks

Kunststoffe im Alltag – Freie Universität Berlin

Glass Tubing Explorer SCHOTT AG

News mit dem Thema Glasübergangstemperatur