Eine Mastergleichung ist eine phänomenologisch begründete Differentialgleichung erster Ordnung, die die Zeitentwicklung der Wahrscheinlichkeiten eines Systems beschreibt.
Für Zustände aus einer diskreten Menge von Zuständen ist die Mastergleichung:
wobei
In der Wahrscheinlichkeitstheorie gilt dies als ein kontinuierlicher Markow-Prozess, bei dem die integrierte Mastergleichung der Chapman-Kolmogorow-Gleichung entspricht[1].
Ist die Matrix
und damit:
Die Mastergleichung (eine Integro-Differentialgleichung) kann als Partielle Differentialgleichung unendlicher Ordnung ausgedrückt werden: man spricht dann von der Kramers-Moyal-Entwicklung[2].
Die Mastergleichung kann zur Beschreibung der Zeitentwicklung einer statistischen Observablen
Die Mastergleichung in der obigen Form wurde in der Quantenstatistik zuerst von Wolfgang Pauli abgeleitet und heißt deshalb auch Pauli-Mastergleichung. Sie ist eine Differentialgleichung für die Zustandswahrscheinlichkeiten, also die Diagonalelemente der Dichtematrix. Es gibt auch Verallgemeinerungen, die die Nichtdiagonalelemente einbeziehen (Mastergleichung in Lindblad-Form).[3] Eine weitere Verallgemeinerung ist die Nakajima-Zwanzig-Gleichung im Mori-Zwanzig Formalismus.
Allgemeiner nennt man in der statistischen Mechanik Mastergleichungen grundlegende Gleichungen (häufig in der obigen Form einer Bilanzgleichung) für die Wahrscheinlichkeitsverteilungen, aus denen sich dann durch Näherungen und Grenzübergänge einfacher zu lösende Gleichungen ableiten lassen, wie beispielsweise Differentialgleichungen vom Typ der Fokker-Planck-Gleichung (die auch die Diffusionsgleichung umfasst) im Kontinuumslimes. Hinter diesen Näherungen steckt aber noch die mikroskopisch gültige Master-Gleichung, daher der Name.