Die Kramers-Moyal-Entwicklung ist in der Physik eine Taylor-Entwicklung einer Mastergleichung, welche die Mastergleichung als Integro-Differentialgleichung in eine partielle Differentialgleichung umformt. Entwickelt wird dabei nach der Schrittgröße $ \Delta x $:[1][2]
mit
Sie beschreibt die zeitliche Entwicklung einer vom Ort $ x $ abhängigen Aufenthaltswahrscheinlichkeit $ p $. Dabei werden kontinuierlich verteilte Schrittgrößen in Raum $ \Delta x=x-x' $ und Zeit $ \Delta t $ betrachtet. $ W(x,\Delta x):=W(x'|x) $ ist die Übergangswahrscheinlichkeitsrate. Abbruch der Reihe in zweiter Ordnung ergibt die Fokker-Planck-Gleichung.
Die Entwicklung ist nach Hendrik Anthony Kramers und José Enrique Moyal benannt.
Das Pawula-Theorem besagt, dass falls das dritte Glied der Entwicklung verschwindet, auch alle höheren Terme verschwinden. Falls die Entwicklung nicht mit dem dritten Glied abbricht, enthält sie unendlich viele Beiträge[3]. .