Die Plastizitätstheorie ist das Teilgebiet der Kontinuumsmechanik, das sich mit irreversiblen Verformungen von Materie befasst. Sie beschreibt den Spannungs- und Verzerrungszustand fester Körper unter dem Einfluss einer Belastung, behandelt aber im Gegensatz zur Elastizitätstheorie keine reversible Verformung.
Jenseits der Proportionalitätsgrenze der Elastizitätstheorie treten verschiedene Formen von anelastischem Verhalten auf:
Folgende Wissenschaftler waren u. a. an der Entwicklung der Plastizitätstheorie beteiligt:
In realen Medien ist jede Deformation nur bis zu einer gewissen Grenze elastisch. Wird diese Grenze überschritten, so tritt bei duktilen Materialien plastische Deformation (Plastisches Fließen) auf. Dabei kehrt der Körper mit dem Ausbleiben der für die Deformation verantwortlichen mechanischen Belastung nicht wieder in seine Ausgangsform zurück. In diesem Fall genügt die Angabe der Positionen von Punkten des Festkörpers nicht mehr zur Kennzeichnung des Zustands des Festkörpers, sondern es muss auch der Prozess berücksichtigt werden.
In diesem Fall ist die Gesamtdeformation $ {\tilde {\epsilon }} $ keine reine Zustandsgröße mehr. Sie setzt sich im allgemeinen Fall zusammen aus:
Elastisch-plastisches Materialverhalten kann beschrieben werden durch eine Fließbedingung, ein Fließgesetz, und ein Verfestigungsgesetz.
Die Fließbedingung legt alle mehrachsigen Spannungszustände fest, an denen das Material plastisch fließt. Es ist üblich, die Fließbedingung als eine konvex gekrümmte Fläche im Spannungsraum anzugeben, die Fließortfläche heißt.
Gebräuchliche Fließbedingungen für metallische Werkstoffe wurden formuliert von Huber, von Mises und Tresca. Sie nehmen jeweils isotropes Verhalten an. Die Formulierungen nach von Mises und nach Tresca werden häufig angewendet.
Die Fließbedingung nach R. v. Mises, die im allgemeinen Fall einfach anzuwenden ist, lautet:
mit
Nach Tresca ist die Fließbedingung:
mit
Für eine graphische Interpretation der Trescaschen Regel können die Mohrschen Spannungskreise herangezogen werden.
Mit der Trescaschen Regel wird oft gerechnet, wenn die Lage des Hauptachsensystems bekannt ist. Für numerisches Rechnen hat sie allerdings die Nachteile, dass jeweils eine Hauptachsentransformation nötig ist und dass die Fließortfläche nicht stetig differenzierbar ist.
Die Deformation findet nicht homogen im gesamten Material statt, sondern nur an energetisch bevorzugten Kristallbaufehlern wie Versetzungen, Phasengrenzen und amorphen Einlagerungen.
Des Weiteren hängt die plastische Verformung von der Temperatur und von der Dehnrate ab.
Das Fließverhalten kann mit vielen konstitutiven Werkstoffgesetzen beschrieben werden. Hierfür existieren empirische und metallphysikalisch basierte Modelle.
Das Fließgesetz bestimmt die plastischen Verzerrungsinkremente:
Das Verfestigungsgesetz legt fest, auf welche Weise die Fließbedingung während des Fließens modifiziert wird. Idealisiert kann von zwei unterschiedlichen Verfestigungsverhalten ausgegangen werden:
Die Modellvorstellung betrachtet zunächst einen kleinen gedachten Würfel innerhalb des Materials, an dessen paarweise zusammengehörigen gegenüberliegenden Flächen je eine Spannung in beliebiger Richtung und Größe angreift. Jede dieser drei Spannungen lässt sich in ihrer zugehörigen Fläche in je eine Normalspannung und in je zwei Tangentialspannungen (Schubspannungen) zerlegen. Mathematisch entsteht somit der aus insgesamt neun Elementen bestehende Spannungstensor.
Wird nun dieser Würfel etwas in seiner Lage verändert, so ändert sich an den angreifenden Spannungen nichts, jedoch wird sich die Aufteilung in die Normal- und Schubspannungen verändern. Es lässt sich zeigen, dass es eine Lage gibt, bei der die Normalspannungen je einen Maximalwert erreichen und die Schubspannungen alle verschwinden. Man nennt diesen Zustand auch „Hauptspannungszustand“ und die übrig gebliebenen Längsspannungen „Hauptspannungen“. Es wird dann von der elementaren Plastizitätstheorie gesprochen. Die Richtungen der drei Würfelkanten in dieser Lage können durch eine Hauptachsentransformation des Spannungstensors berechnet werden.
Zu erkennen ist diese ausgezeichnete Lage an den Wirkungen der Spannungen: im Allgemeinen bedingen Normalspannungen Längenänderungen und Schubspannungen Winkeländerungen. Wenn sich zumindest die Modellvorstellung für eine Verzerrung (Umformung) nur aus Längenänderungen zusammensetzen lässt und also keine Winkeländerungen mehr auftreten, kann angenommen werden, dass die o. g., für die weitere mathematische Behandlung günstige Lage gegeben ist. (Aus einem Quader vor der Umformung entsteht nach der Umformung wieder ein Quader; parallelepipedische Umformung).
Die elementare Plastizitätstheorie hat breite Anwendung bei der bildsamen Formgebung von Metallen gefunden, insbesondere in der Massivumformung. Dabei besteht zunächst ein Widerspruch, da Metalle kristallin, also strukturiert aufgebaut sind. Diese Anisotropie besteht jedoch nur im mikroskopischen Bereich der „Körner“ (Größenordnung etwa 50 µm in jeder Richtung), die wiederum auf Grund der Art ihrer Entstehung aus dem flüssigen (Guss-)Zustand in ihrer Orientierung regellos durcheinander liegen. Insgesamt ergibt sich für einen makroskopischen Körper, wie er in der Umformtechnik praktisch immer vorhanden ist, ein scheinbar gleichmäßiger Aufbau (Quasi-Isotropie).
Eine weitere wichtige Anwendung der elementaren Plastizitätstheorie ist das im Rahmen der Baustatik entstandene Traglastverfahren.