Quadratisches Mittel

Quadratisches Mittel

Version vom 16. Februar 2022, 09:55 Uhr von imported>1234qwer1234qwer4 (Verlinkung)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Dieser Artikel oder nachfolgende Abschnitt ist nicht hinreichend mit Belegen (beispielsweise Einzelnachweisen) ausgestattet. Die fraglichen Angaben werden daher möglicherweise demnächst entfernt. Bitte hilf der Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst.

Das quadratische Mittel (oder der quadratische Mittelwert QMW, englisch: root mean square RMS) ist derjenige Mittelwert, der berechnet ist als Quadratwurzel des Quotienten aus der Summe der Quadrate der beachteten Zahlen und ihrer Anzahl.

Die zwei Zahlen 1 und 2 haben z. B. den quadratischen Mittelwert $ {\sqrt {\frac {1^{2}+2^{2}}{2}}}\approx 1{,}58 $ (arithmetisches Mittel = 1,5;  die größere Zahl 2 wird beim quadratischen Mittel stärker bewertet).

Wegen der Quadrierung wird das quadratische Mittel auch zweites (absolutes) Moment genannt. Das „dritte Moment“ wäre die Mittelung in der dritten Potenz (auch kubisches Mittel genannt) usw.

Berechnung

Für die Berechnung des QMW einer Zahlenreihe werden zunächst die Quadrate aller Zahlenwerte $ x_{i} $ addiert und durch ihre Anzahl n dividiert. Die Quadratwurzel daraus ergibt den QMW:

$ \mathrm {QMW} ={\sqrt {{\frac {1}{n}}\sum _{i=1}^{n}{x_{i}^{2}}}}={\sqrt {\frac {x_{1}^{2}+x_{2}^{2}+\cdots +x_{n}^{2}}{n}}} $.

Aus geometrischer Sicht ermittelt man aus der Zahlenreihe Quadrate und aus ihnen ein Quadrat durchschnittlicher Fläche bzw. mittlerer Größe (der Radikand unter der Wurzel). Die Wurzel bzw. Seitenlänge dieses Quadrates ist das quadratische Mittel der Zahlenreihe $ x_{i} $ bzw. der Seitenlängen aller Quadrate.

Für fortlaufend vorhandene Größen muss über den betrachteten Bereich integriert werden:

$ \mathrm {QMW} ={\sqrt {{\frac {1}{t_{2}-t_{1}}}\int _{t_{1}}^{t_{2}}{f(t)^{2}\,\mathrm {d} t}}} $ ;

bei periodischen Größen, beispielsweise dem sinusförmigen Wechselstrom, integriert man über eine Anzahl von Perioden.

Anwendung

In der Technik hat das quadratische Mittel große Bedeutung bei periodisch veränderlichen Größen wie dem Wechselstrom, dessen Leistungsumsatz an einem ohmschen Widerstand (Joulesche Wärme) mit dem Quadrat der Stromstärke ansteigt. Man spricht hier vom Effektivwert des Stromes. Der gleiche Zusammenhang gilt bei zeitlich veränderlichen elektrischen Spannungen.

Bei einer Wechselgröße mit Sinusform beträgt der QMW das $ (1/{\sqrt {2}}) $-fache des Scheitelwerts, also ca. 70,7 %.

Weiß man nichts über den zeitlichen Verlauf der auftretenden Schwankungen, so sollte aus dem Zusammenhang, in dem die Mittelwertbildung vorzunehmen ist, bekannt sein, ob eher der Gleichwert (z. B. bei Elektrolyse) oder der Effektivwert (z. B. bei Licht und Wärme) aussagekräftig ist.

Siehe auch

  • Messtechnik, Streuung, Varianz
  • Methode der kleinsten Quadrate, Ausgleichungsrechnung
  • Mittelungleichung
  • Mittlere quadratische Abweichung, Median
  • Regelgüte

es:Valor eficaz pl:Wartość skuteczna