Die Clapeyron-Gleichung, die Émile Clapeyron 1834 entwickelte, liefert die Steigung aller Phasengrenzlinien im p-T-Diagramm eines Reinstoffes, d. h. z. B. auch zwischen zwei festen Phasen. Sie lautet:
mit
Die Clapeyron-Gleichung lässt sich für verschiedene Phasengrenzen spezifizieren; insbesondere folgende Übergänge werden durch sie bestimmt:
Die gesuchte Steigung der Phasengrenzlinien im p-T-Diagramm wird durch die noch unbekannte Funktion
An einer Phasengrenzlinie, d. h. bei dem Wertepaar aus Druck p und Temperatur T, in dem zwei Phasen α und β im thermodynamischen Gleichgewicht koexistieren, besitzen diese beiden Phasen die gleichen chemischen Potentiale μ:
(1)
| ||
Da auf der gesamten Phasengrenzlinie auch bei infinitesimalen Veränderungen von p oder T Gleichung 1 gilt, muss auch die Veränderung der Potentiale immer gleich bleiben:
(2)
| ||
Aus der Gibbs-Duhem-Gleichung ist bekannt, dass
(3)
| ||
Einsetzen in Gleichung 2 liefert
(4)
| ||
Ausklammern von dp und dT sowie anschließende Umformung liefert die Clapeyron-Gleichung:
(5)
| ||
mit
bzw.
Für reversible Vorgänge kann die Umwandlungsentropie aus der dabei umgesetzten Wärmemenge Qrev berechnet werden, die bei isobaren Vorgängen gleich der Änderung der molaren Enthalpie Hm ist:
(6)
| ||
Damit erhält man die Clausius-Clapeyron-Gleichung.