Physikalische Einheit | |
---|---|
Einheitenname | Lumensekunde
|
Einheitenzeichen | $ \mathrm {lms} $ |
Physikalische Größe(n) | Lichtmenge |
Formelzeichen | $ E $ |
Dimension | $ {\mathsf {J\;T}} $ |
System | Internationales Einheitensystem |
In SI-Einheiten | $ \mathrm {1\,lms=1\;lm\cdot 1\;s} $ |
Abgeleitet von | Lumen, Sekunde |
Lumensekunde (Einheitenzeichen lms) ist die SI-Einheit der Lichtmenge. Sie berechnet sich als Integral eines Lichtstroms, der in Lumen angegeben ist, über die Zeit in Sekunden:[1]
Die Einheit wird auch Talbot (nach William Henry Fox Talbot) oder Lumberg genannt, jedoch sind diese speziellen Namen weder von den Organen der Internationalen Meterkonvention für den Gebrauch zusammen mit SI-Einheiten angenommen, noch in Deutschland gesetzliche Einheiten im Messwesen.
Gleichzeitig mit der Einheit Lumberg wurde auch das Lumerg geschaffen, das entsprechend dem Verhältnis zwischen Erg und Joule definiert wurde, als 1 lumerg = 10−7 lms.
In der Praxis wird oft die Lumenstunde (lmh) als Maß verwendet, welche die Menge von einem Lumen über eine Stunde ist.
Bezeichnung | Formelzeichen | Definition | Einheitenname | Einheitenumformung | Dimension |
---|---|---|---|---|---|
Lichtstrom (luminous flux, luminous power) |
$ \textstyle {\mathit {\Phi _{\mathrm {v} }}}\,,F\,,P $ | $ \textstyle {\mathit {\Phi _{\mathrm {v} }}}=K_{\mathrm {m} }\int _{380\,\mathrm {nm} }^{780\,\mathrm {nm} }{\frac {\partial {\mathit {\Phi _{\mathrm {e} }}}(\lambda )}{\partial \lambda }}\cdot V(\lambda )\,\mathrm {d} \lambda $ | Lumen (lm) | $ \textstyle \mathrm {1\,lm=1\,sr\cdot cd} $ | $ {\mathsf {J}}\, $ |
Beleuchtungsstärke (illuminance) |
$ \textstyle E_{\mathrm {v} }\, $ | $ \textstyle E_{\mathrm {v} }={\frac {\partial {\mathit {\Phi _{\mathrm {v} }}}}{\partial A}} $ | Lux (lx), früher Nox (nx), Phot (ph) | $ \textstyle \mathrm {1\,lx=1\,{\frac {lm}{m^{2}}}=1\,{\frac {sr\cdot cd}{m^{2}}}} $ | $ {\mathsf {L^{-2}\cdot J}} $ |
Spezifische Lichtausstrahlung (luminous emittance) |
$ \textstyle M_{\mathrm {v} }\, $ | $ \textstyle M_{\mathrm {v} }={\frac {\partial {\mathit {\Phi _{\mathrm {v} }}}}{\partial A}} $ | Lux (lx) | $ \textstyle \mathrm {1\,lx=1\,{\frac {lm}{m^{2}}}=1\,{\frac {sr\cdot cd}{m^{2}}}} $ | $ {\mathsf {L^{-2}\cdot J}} $ |
Leuchtdichte (luminance) |
$ \textstyle L_{\mathrm {v} }\, $ | $ \textstyle L_{\mathrm {v} }={\frac {\partial ^{2}{\mathit {\Phi _{\mathrm {v} }}}}{\partial \Omega \cdot \partial A_{1}\cdot \cos \varepsilon _{1}}} $ | keine eigene Einheit, manchmal Nit genannt, früher in Stilb (sb), Apostilb (asb), Lambert (la), Blondel |
$ \textstyle \mathrm {1\,{\frac {cd}{m^{2}}}=1\,{\frac {lm}{sr\cdot m^{2}}}} $ | $ {\mathsf {L^{-2}\cdot J}} $ |
Lichtstärke (luminous intensity) |
$ \textstyle I_{\mathrm {v} }\, $ | $ \textstyle I_{\mathrm {v} }={\frac {\partial {\mathit {\Phi _{\mathrm {v} }}}}{\partial \Omega }} $ | Candela (cd) (SI-Basiseinheit), früher in Hefnerkerze (HK), Internationale Kerze (IK), Neue Kerze (NK) |
$ \textstyle \mathrm {1\,cd=1\,{\frac {lm}{sr}}} $ | $ {\mathsf {J}}\, $ |
Lichtmenge (luminous energy) |
$ \textstyle Q_{\mathrm {v} }\, $ | $ \textstyle Q_{\mathrm {v} }=\int _{0}^{T}{\mathit {\Phi _{\mathrm {v} }}}(t)\mathrm {d} t $ | Lumensekunde (lm s), Talbot, Lumberg | $ \textstyle \mathrm {1\,lm\cdot s=1\,sr\cdot cd\cdot s} $ | $ {\mathsf {T\cdot J}} $ |
Belichtung (luminous exposure) |
$ \textstyle H_{\mathrm {v} }\, $ | $ \textstyle H_{\mathrm {v} }=\int _{0}^{T}E_{\mathrm {v} }(t)\mathrm {d} t $ | Luxsekunde (lx s) | $ \textstyle \mathrm {1\,lx\cdot s=1\,{\frac {lm\cdot s}{m^{2}}}=1\,{\frac {sr\cdot cd\cdot s}{m^{2}}}} $ | $ {\mathsf {L^{-2}\cdot T\cdot J}} $ |
Lichtausbeute (luminous efficacy) |
$ \textstyle \eta \,,\rho \, $ | $ \textstyle \eta ={\frac {\mathit {\Phi _{\mathrm {v} }}}{P}} $ | Lumen / Watt | $ \textstyle \mathrm {1\,{\frac {lm}{W}}=1\,{\frac {sr\cdot cd\cdot s}{J}}=1\,{\frac {sr\cdot cd\cdot s^{3}}{kg\cdot m^{2}}}} $ | $ {\mathsf {M^{-1}\cdot L^{-2}\cdot T{^{3}}\cdot J}} $ |
Raumwinkel (solid angle) |
$ \textstyle \Omega \, $ | $ \textstyle \Omega ={\frac {S}{r^{2}}} $ | Steradiant (sr) | $ \textstyle \mathrm {1\,sr={\frac {\left[Fl{\ddot {a}}che\right]}{\left[Radius^{2}\right]}}=1\,{\frac {m^{2}}{m^{2}}}} $ | $ {\mathsf {1}}\, $ (Eins) |