Ω− | |
---|---|
Klassifikation | |
Fermion Hadron Baryon | |
Eigenschaften [1] | |
Ladung | −1 e (−1,602 · 10−19 C) |
Masse | |
SpinParität | 3⁄2+ |
Isospin | 0 |
Strangeness | −3 |
mittlere Lebensdauer | 0,821(11) · 10−10 s |
Quark-Zusammensetzung | sss |
Das Ω-Baryon, auch Omega-Baryon, ist ein relativ langlebiges Hadron, das zur Gruppe der Baryonen gehört.
Das Teilchen wurde 1961 auf Grund theoretischer Überlegungen vorhergesagt und 1964 am Brookhaven National Laboratory in einer Blasenkammer experimentell nachgewiesen.[2] Mit seiner sss-Konfiguration hat es die Strangeness −3. Es ist das einzige bekannte Teilchen, das aus drei schweren (d. h. nicht der ersten Elementarteilchenfamilie angehörenden) Quarks desselben Flavours besteht.
Da bei der Erzeugung über die starke Wechselwirkung die Strangeness-Quantenzahl erhalten bleibt, müssten bei der Erzeugung eines Ω− neben drei s-Quarks auch drei s-Antiquarks erzeugt werden. Dies lässt sich auf zwei ss-Paare reduzieren, wenn einer der Reaktionspartner ein K− (Kaon) ist, weil dieses schon ein s-Quark enthält. Wegen der Erhaltung der Baryonenzahl muss der andere Reaktionspartner ein Baryon sein, am einfachsten ein Proton (p). Eine mögliche Reaktion ist:
Der Zerfall ist aus energetischen Gründen nur in Teilchen mit insgesamt weniger als drei s-Quarks möglich und kann daher nur über die schwache Wechselwirkung geschehen, z. B. durch:
Das $ \Omega ^{-} $-Teilchen (sss) stellte vor Einführung der Farbladung, ähnlich dem $ \Delta ^{++} $- (uuu) und dem $ \Delta ^{-} $-Teilchen (ddd), eine Verletzung des Pauli-Prinzips dar. Es handelt sich bei allen drei Teilchen um Mitglieder des Baryonendekupletts mit einem Spin von 3⁄2. Da Quarks Fermionen mit Spin 1⁄2 sind, müssen die Spins der drei Quarks parallel stehen, damit die Vektorsumme 3⁄2 ergibt. Dies wiederum bedeutet, dass die Quarks in allen Quantenzahlen gleich sind. Dies würde implizieren, dass die Wellenfunktion des Omega symmetrisch ist. Das Pauli-Prinzip fordert jedoch für Fermionen eine anti-symmetrische Wellenfunktion.
Das Problem wurde gelöst, indem man einen zusätzlichen inneren Freiheitsgrad für Quarks postulierte, die Farbladung. Damit unterscheiden sich die Quarks wieder in mindestens einer Quantenzahl, und ihre Wellenfunktionen sind wieder anti-symmetrisch.
Es sind schwere Baryonen nachgewiesen worden, die an Stelle eines der s-Quarks ein Charm-Quark bzw. ein Bottom-Quark besitzen, also mit der Quarkzusammensetzung ssc und ssb. Sie werden als Ωc (oder Ωc0) bzw. Ωb (oder Ωb−) bezeichnet.