Die Wellenfunktion
Eine Wellenfunktion ist die Funktion, die die quantenmechanische Bewegungsgleichung, also die Schrödinger-, Klein-Gordon- oder Dirac-Gleichung, im Ortsraum oder im Impulsraum löst. Lösungen dieser Wellengleichungen können sowohl gebundene Teilchen (wie Elektronen in den Schalen eines Atoms) oder freie Teilchen (z. B. ein α- oder β-Teilchen als Wellenpaket) beschreiben. Die Wellenfunktion ist in der Regel eine komplexe Funktion.
Wird ein System mit inneren Freiheitsgraden, zum Beispiel dem Spin, durch eine Wellenfunktion beschrieben, ist die Wellenfunktion vektorwertig. Die nichtrelativistische Wellenfunktion zur Beschreibung eines Elektrons hat daher zwei Komponenten; eine für die Konfiguration „Spin up“ und eine für „Spin down“.
Bei Teilchensystemen (z. B. mit mehreren ununterscheidbaren Teilchen) bezeichnet man eine solche Lösung als Vielteilchen-Wellenfunktion. Wegen der Wechselwirkung der Teilchen untereinander lassen sich diese Lösungen jedoch meist nicht mehr ohne die modernere Methodik der Quantenfeldtheorie berechnen.
Da die Bewegungsgleichungen im komplexen Raum definiert sind, benötigen sie zur allgemeinen Lösung eine Funktion, deren Funktionswerte ebenfalls im komplexen Raum liegen. Daher ist die Wellenfunktion nicht reell, sondern komplexwertig. Dies spiegelt sich u. a. darin wider, dass
Zum Vergleich: Auch die elektrische Feldstärke
Teilchen mit inneren Eigenschaften (wie zum Beispiel dem Spin eines gebundenen Elektrons oder dem Drehimpuls eines Photons) werden durch Wellenfunktionen mit mehreren Komponenten beschrieben. Je nach dem Transformationsverhalten der Wellenfunktionen bei Lorentztransformationen unterscheidet man in der relativistischen Quantenfeldtheorie skalare, tensorielle und spinorielle Wellenfunktionen bzw. Felder.
Formal betrachtet sind die Wellenfunktionen die Entwicklungskoeffizienten des quantenmechanischen Zustandsvektors im Orts- beziehungsweise Impulsraum. Es ist in Dirac-Notation
mit
sodass gilt:
Die Orts- und Impulseigenzustände sind die Eigenzustände des Ortsoperators
Von praktischerer Bedeutung sind die Wellenfunktionen als Lösung der Bewegungsgleichungen im Orts- oder Impulsraum. Dabei macht man sich zunutze, dass der Ortsoperator in der Ortsbasis ein Multiplikationsoperator und der Impulsoperator in der Ortsbasis ein Differentialoperator ist. In der Impulsbasis sind die Rollen vertauscht, dort ist der Ortsoperator ein Differentialoperator und der Impulsoperator ein Multiplikationsoperator.
Alle Bewegungsgleichungen der Quantenmechanik sind Wellengleichungen. Die Schrödinger-Gleichung lautet in der basisunabhängigen Dirac-Notation
und im Ortsraum
mit
alle (im Rahmen dieses Artikels behandelten) Eigenschaften der Wellenfunktion, die die nichtrelativistische Schrödinger-Gleichung löst, lassen sich auf den relativistischen Fall der Klein-Gordon- oder der Dirac-Gleichung verallgemeinern.
Obgleich die Schrödinger-Gleichung im Gegensatz zu ihren relativistischen Äquivalenten keine Wellengleichung im mathematisch strengen Sinn darstellt, ist eine Lösung der Schrödinger-Gleichung im Ortsraum bei verschwindendem Potential eine ebene Welle, dargestellt durch die Funktion
Ihre Dispersionsrelation lautet:
mit
gegeben ist.
Da die Bewegungsgleichungen linear sind, ist jede Superposition von Lösungen wieder eine Lösung.
Die Wellenfunktion im Impulsraum
nebst der Ersetzung
Die Wellenfunktion
mit
Die Amplituden müssen so gewählt werden, dass die Normierung der Wellenfunktion gewährleistet ist. Das Betragsquadrat der Wellenfunktion ist durch
gegeben. Eine Integration über das gesamte Volumen ergibt mit der Darstellung der Dirac-Distribution
Praktisch kann dies beispielsweise durch eine gaußförmige Einhüllende
realisiert werden. Durch die Wahl dieser Einhüllenden wird ein Teilchen mit minimaler Orts-Impuls-Unschärfe und einem Erwartungswert des Impulses bei
Eine Aussage im quantenmechanischen Messprozess lautet, bei einer Messung kollabiert die Wellenfunktion instantan auf einen Eigenwert des zur Messung zugehörigen Operators. Dieser Eigenwert ist das Ergebnis der Messung. Die Wahrscheinlichkeit, auf einen dieser Eigenwerte zu kollabieren, ist in der Matrizenmechanik durch
gegeben, wobei
Das Skalarprodukt des Hilbertraums entspricht also einer Integration über den gesamten Raumbereich im Ortsraum. Zwei Wellenfunktionen heißen orthogonal, wenn das Integral über den gesamten Ortsraum ihres Produkts verschwindet. Die Wahrscheinlichkeit, den Messwert
Der Erwartungswert einer Messung im Zustand
beschrieben. Dies übersetzt sich in der Wellenmechanik zu:
Dabei ist
Die physikalische Interpretation einer Wellenfunktion ist kontextabhängig. Mehrere Beispiele werden unten angeführt, gefolgt von einer Interpretation der oben beschriebenen drei Fälle.
Die Wellenfunktion eines Teilchens im eindimensionalen Raum ist eine komplexe Funktion
Die Wahrscheinlichkeit, bei einer Messung das Teilchen im Intervall
Dies führt zu der Normierungsbedingung
da eine Messung der Teilchenposition eine reelle Zahl ergeben muss. Das heißt: Die Wahrscheinlichkeit, ein Teilchen an irgendeinem Ort zu finden, ist gleich 1.
Der dreidimensionale Fall ist analog zum Eindimensionalen; Die Wellenfunktion ist eine komplexe Funktion
Die Normierungsbedingung ist analog zum eindimensionalen Fall
wobei das Integral sich über den gesamten Raum erstreckt.
In diesem Fall ist die Wellenfunktion eine komplexe Funktion von sechs Raumvariablen,
und
wobei
wobei das vorgestellte Integral über den gesamten Bereich aller sechs Variablen reicht.
Dabei ist von entscheidender Bedeutung, dass im Fall von Zwei-Teilchen-Systemen nur das System, das aus beiden Teilchen besteht, eine wohldefinierte Wellenfunktion haben muss. Daraus ergibt sich, dass es unmöglich sein kann, eine Wahrscheinlichkeitsdichte für Teilchen EINS zu definieren, welche nicht ausdrücklich von der Position von Teilchen ZWEI abhängt. Die Moderne Physik nennt dieses Phänomen Quantenverschränkung bzw. Quanten-Nichtlokalität.
Die Wellenfunktion eines eindimensionalen Teilchens im Impulsraum ist eine komplexe Funktion
Dies führt zur Normierungsbedingung
weil eine Messung des Teilchenimpulses immer eine reelle Zahl ergibt.
Die Wellenfunktion eines Teilchens mit Spin 1/2 (ohne Berücksichtigung seiner räumlichen Freiheitsgrade) ist ein Spalten-Vektor
Die Bedeutung der Komponenten des Vektors hängt von der verwendeten Basis ab, typischerweise entsprechen
Die Werte
Dies führt zur Normierungsbedingung