Betragsquadrat

Betragsquadrat

Der Graph der Betragsquadrat-Funktion von komplexen Zahlen ist ein Paraboloid über der komplexen Zahlenebene

Das Betragsquadrat oder Absolutquadrat ist eine Sammelbezeichnung für Funktionen, die vor allem in der Physik auf Zahlen, Vektoren und Funktionen angewendet werden. Man erhält das Betragsquadrat einer reellen oder komplexen Zahl, indem man ihren Betrag quadriert. Das Betragsquadrat eines reellen oder komplexen Vektors endlicher Dimension ist das Quadrat seiner Länge (bzw. euklidischen Norm). Das Betragsquadrat einer reell- oder komplexwertigen Funktion ist wieder eine Funktion, deren Funktionswerte gleich den Betragsquadraten der Funktionswerte der Ausgangsfunktion sind.

Das Betragsquadrat wird beispielsweise in der Signaltheorie verwendet, um die Gesamtenergie eines Signals zu ermitteln. In der Quantenmechanik wird das Betragsquadrat eingesetzt, um Wahrscheinlichkeiten von Zuständen, zum Beispiel die Aufenthaltswahrscheinlichkeiten von Teilchen, zu berechnen. In der Relativitätstheorie wird für das Lorentz-invariante Quadrat von Vierervektoren in der Literatur auch der Begriff Betragsquadrat verwendet, obwohl dieses Quadrat auch negative Zahlen ergeben kann und sich somit von der allgemeinen Definition in euklidischen Räumen unterscheidet.

Definitionen

Zahlen

Datei:Parabola2.svg
Der Graph der Betragsquadrat-Funktion von reellen Zahlen ist die Normalparabel

Das Betragsquadrat $ |x|^{2} $ einer reellen Zahl $ x $ ist einfach ihr Quadrat:

$ |x|^{2}=x^{2} $.

Das Betragsquadrat $ |z|^{2} $ einer komplexen Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): z = x + \mathrm iy mit Realteil Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \operatorname{Re}(z) = x und Imaginärteil Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \operatorname{Im}(z) = y ist jedoch (und zwar für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): y \neq 0 ) nicht ihr Quadrat Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): z^2 = x^2 + 2 \mathrm ixy - y^2 , sondern:[1]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |z|^2 = z^\ast\cdot z = (x - \mathrm iy)\cdot(x + \mathrm iy) = x^2 + y^2 .

Hierbei bezeichnet $ z^{\ast }=x-\mathrm {i} y $ das komplex Konjugierte von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): z .

Das Betragsquadrat ist stets eine nichtnegative reelle Zahl.

Vektoren

Bei Vektoren im Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \R^n ist mit dem Betrag bzw. der Länge die euklidische Norm (2-Norm) des Vektors gemeint. Das Betragsquadrat eines Vektors Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec v \in \R^n kann über das Standardskalarprodukt des Vektors mit sich selbst berechnet werden:[2]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |\vec v|^2 = \vec v \cdot \vec v = v_1^2 + v_2^2 + \dots + v_n^2 .

Diese Beziehung ergibt sich direkt aus der Definition der euklidischen Norm. Bei komplexen Vektoren $ {\vec {v}}\in \mathbb {C} ^{n} $ ist entsprechend mit dem konjugiert Komplexen zu rechnen:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |\vec v|^2 = v_1^\ast\cdot v_1 + v_2^\ast\cdot v_2 + \dots + v_n^\ast\cdot v_n .

In beiden Fällen ist das Ergebnis eine nichtnegative reelle Zahl.

Funktionen

Fehler beim Erstellen des Vorschaubildes:
Das Quadrat der Sinusfunktion

Für reell- oder komplexwertige Funktionen wird das Betragsquadrat punktweise definiert, wodurch man wieder eine Funktion erhält. Das Betragsquadrat einer reellwertigen Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \phi \colon \Omega \to \R ist durch

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): | \phi |^2 \colon \Omega \to \R, ~ x \mapsto | \phi(x) |^2 = (\phi(x))^2

gegeben und damit gleich dem Quadrat der Funktion, während das Betragsquadrat einer komplexwertigen Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \phi \colon \Omega \to \Complex durch

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): | \phi |^2 \colon \Omega \to \Complex, ~ x \mapsto | \phi(x) |^2 = (\phi(x))^\ast \cdot \phi(x)

definiert wird. Das Betragsquadrat einer Funktion ist demnach eine reellwertige Funktion mit dem gleichen Definitionsbereich $ \Omega $, deren Funktionswerte gleich den Betragsquadraten der Funktionswerte der Ausgangsfunktion sind. Sie wird im reellen Fall auch durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \phi^2 und im komplexen Fall auch durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \phi^\ast \phi notiert.[3]

Eigenschaften

Im Folgenden werden grundlegende Eigenschaften des Betragsquadrats komplexer Zahlen aufgeführt. Durch punktweise Betrachtung lassen sich diese Eigenschaften auch auf Funktionen übertragen. Eigenschaften des Betragsquadrats von Vektoren finden sich im Artikel Euklidische Norm.

Kehrwert

Für den Kehrwert einer komplexen Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): z \neq 0 gilt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{1}{z} = \frac{z^*}{z^* z} = \frac{z^*}{|z|^2} .

Er kann also berechnet werden, indem die konjugiert komplexe Zahl durch das Betragsquadrat dividiert wird.

Betrag des Quadrats

Das Betragsquadrat einer komplexen Zahl ist gleich dem Betrag des Quadrats der Zahl, das heißt[4]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): | z |^2 = | z^2 | .

Es gilt nämlich

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): | z^2 | = | (x + \mathrm iy)^2 | = | x^2 - y^2 + 2 \mathrm ixy | = \sqrt{(x^2-y^2)^2 + (2xy)^2} = \sqrt{(x^2 + y^2)^2} = x^2 + y^2 = | z |^2 .

Bei der Darstellung in Polarform Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): z=r\cdot \mathrm e^{\mathrm i \varphi} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): r = |z| erhält man entsprechend

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): | z^2 | = | r^2 \mathrm e^{2 \mathrm i \varphi} | = | r^2 | \cdot | \mathrm e^{2 \mathrm i \varphi} | = r^2 \cdot 1 = |z|^2 .

Produkt und Quotient

Für das Betragsquadrat des Produkts zweier komplexer Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): z_1 = r_1 \mathrm e^{\mathrm i \varphi_1} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): z_2 = r_2 \mathrm e^{\mathrm i \varphi_2} gilt:

$ |z_{1}z_{2}|^{2}=(r_{1}\mathrm {e} ^{-\mathrm {i} \varphi _{1}}r_{2}\mathrm {e} ^{-\mathrm {i} \varphi _{2}})(r_{1}\mathrm {e} ^{\mathrm {i} \varphi _{1}}r_{2}\mathrm {e} ^{\mathrm {i} \varphi _{2}})=r_{1}^{2}r_{2}^{2}=|z_{1}|^{2}|z_{2}|^{2} $.

Analog dazu gilt für das Betragsquadrat des Quotienten zweier komplexer Zahlen für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): z_2 \neq 0 :

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \left| \frac{z_1}{z_2} \right|^2 = \left( \frac{r_1 \mathrm e^{-\mathrm i \varphi_1}}{r_2 \mathrm e^{-\mathrm i \varphi_2}} \right) \left( \frac{r_1 \mathrm e^{\mathrm i \varphi_1}}{r_2 \mathrm e^{\mathrm i \varphi_2}} \right) = \frac{r_1^2}{r_2^2} = \frac{| z_1 |^2}{| z_2 |^2} .

Das Betragsquadrat des Produkts bzw. des Quotienten zweier komplexer Zahlen ist also das Produkt bzw. der Quotient ihrer Betragsquadrate. Diese Eigenschaften weist auch bereits der Betrag selbst auf.

Summe und Differenz

Für das Betragsquadrat der Summe bzw. der Differenz zweier komplexer Zahlen gilt entsprechend:[5]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): | z_1 \pm z_2 |^2 = ( r_1 \mathrm e^{-\mathrm i \varphi_1} \pm r_2 \mathrm e^{-\mathrm i \varphi_2} ) ( r_1 \mathrm e^{\mathrm i \varphi_1} \pm r_2 \mathrm e^{\mathrm i \varphi_2} ) = r_1^2 + r_2^2 \pm 2 r_1 r_2 \cos (\varphi_2 - \varphi_1) .

Stellt man sich die komplexen Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): z_1 und $ z_{2} $ sowie ihre Summe bzw. Differenz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): z_1 \pm z_2 als Punkte in der komplexen Ebene vor, dann entspricht diese Beziehung gerade dem Kosinussatz für das entstehende Dreieck. Speziell erhält man für das Betragsquadrat der Summe zweier komplexer Zahlen mit Betrag eins:[5]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): | \mathrm e^{\mathrm i \varphi_1} + \mathrm e^{\mathrm i \varphi_2} |^2 = 2 + 2 \cos (\varphi_2 - \varphi_1) = 4 \cos^2\left(\frac{\varphi_2-\varphi_1}{2}\right) .

Anwendungen

Signaltheorie

In der Signaltheorie ist die Gesamtenergie bzw. die Gesamtleistung eines kontinuierlichen komplexwertigen Signals Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): f \colon \R \to \Complex definiert als das Integral über sein Betragsquadrat, das heißt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E = \int_{-\infty}^\infty | f(t) |^2 \, \mathrm dt .

Die Gesamtenergie entspricht damit dem Quadrat der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): L^2 -Norm des Signals. Ein zentrales Resultat ist hier der Satz von Plancherel, nach dem die Energie eines Signals im Zeitbereich gleich seiner Energie im Frequenzbereich ist. Ist demnach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathcal{F} die (normierte) Fourier-Transformierte von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): f , so gilt[6]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \int_{-\infty}^\infty | f(t) |^2 \, \mathrm dt = \int_{-\infty}^\infty | \mathcal{F}(\omega) |^2 \, \mathrm d\omega .

Die Fourier-Transformation erhält also die Gesamtenergie eines Signals und stellt damit eine unitäre Abbildung dar.

Relativitätstheorie

In der Relativitätstheorie werden die Zeit- und Ortskoordinaten eines Ereignisses in der Raumzeit in einem Orts-Vierervektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): r = (c\,t, x, y, z) zusammengefasst. Die Zeitkoordinate Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t wird dabei mit der Lichtgeschwindigkeit $ c $ multipliziert, damit sie wie die Raumkoordinaten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (x,y,z) die Dimension einer Länge hat. Im Minkowski-Raum der flachen Raumzeit wird nun – abweichend von der oben angebenden Definition für Vektoren im Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \R^4 – das Quadrat des Vierervektors $ r $ durch

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): r^2 = c^2\,t^2 - x^2 - y^2 - z^2

definiert, was auch eine negative reelle Zahl ergeben kann. Für dieses Vierervektorquadrat wird in der Literatur auch der Begriff Betragsquadrat verwendet,[7] obwohl die auf dem Minkowski-Raum definierte Bilinearform, die dieses Betragsquadrat induziert, kein Skalarprodukt ist, von dem sich ein Betragsquadrat mit nichtnegativen Werten im obigen Sinne ableiten ließe. Die Lorentz-Transformationen lassen sich nun als diejenigen Koordinatentransformationen charakterisieren, die besagte Bilinearform und damit das Betragsquadrat erhalten. Beispielsweise ist die Koordinatentransformation in das Ruhesystem eines Objekts, das sich mit Relativgeschwindigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x -Richtung bewegt,

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t' = \gamma (t - vx/c^2), \quad x' = \gamma(x - vt), \quad y' = y, \quad z' = z ,

wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \gamma der Lorentz-Faktor ist, längenerhaltend, das heißt für den transformierten Vierervektor $ r'=(c\,t',x',y',z') $ gilt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (r')^2 = r^2 .

Analog dazu wird auch das Betragsquadrat jedes anderen Vierervektors (beispielsweise des Impuls-Vierervektors) definiert, welches dann ebenfalls invariant bezüglich einer Lorentz-Transformation ist.

Quantenmechanik

Das Betragsquadrat wird auch in der Quantenmechanik häufig verwendet.[8] In der Bra-Ket-Notation wird das Skalarprodukt zweier Vektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): | \phi \rangle und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): | \psi \rangle des zugrundeliegenden Hilbertraums als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \langle \phi | \psi \rangle geschrieben. Ist eine Observable als Operator Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A mit einem nicht-entarteten Eigenwert $ a $ zu einem normierten Eigenvektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |u\rangle gegeben, das heißt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A|u\rangle = a|u\rangle ,

so berechnet sich die Wahrscheinlichkeit, in einem Zustand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |\psi\rangle den Wert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a für die Observable Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A zu messen, über das Betragsquadrat der entsprechenden Wahrscheinlichkeitsamplitude:

$ {\mathcal {P}}(a)=\left|\langle u|\psi \rangle \right|^{2} $.

Das Betragsquadrat im punktweisen Sinne der normierten Wellenfunktion aus der Schrödingergleichung ist gleich der Aufenthaltswahrscheinlichkeitsdichte des Teilchens:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho(\mathbf r,t)=|\psi(\mathbf r,t)|^2=\psi^\ast(\mathbf r,t)\,\psi(\mathbf r,t) .

Algebra

In der Körpertheorie ist das Betragsquadrat komplexer Zahlen die Norm der Körpererweiterung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Complex / \R . Es stellt auch die Norm im quadratischen Zahlkörper Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbb{Q}(i) dar und spielt daher beim Rechnen mit gaußschen Zahlen eine wichtige Rolle.

Einzelnachweise

  1. May-Britt Kallenrode: Rechenmethoden der Physik: Mathematischer Begleiter Zur Experimentalphysik. Springer, 2005, ISBN 3-540-27482-0, S. 91.
  2. Klemens Burg, Herbert Haf, Friedrich Wille, Andreas Meister: Höhere Mathematik Für Ingenieure Band II: Lineare Algebra. Springer, 2012, ISBN 3-8348-2267-1, S. 46.
  3. Klaus Stierstadt: Thermodynamik: Von Der Mikrophysik Zur Makrophysik. Springer, 2010, ISBN 3-642-05098-0, S. 83–84.
  4. Ilja N. Bronstein, Konstantin A. Semendjajew, Gerhard Musiol, Heiner Mühlig: Taschenbuch der Mathematik. 7. Auflage. Harri Deutsch, 2008, ISBN 3-8171-2007-9, S. 37.
  5. 5,0 5,1 Eric W. Weisstein: CRC Concise Encyclopedia of Mathematics. 2. Auflage. CRC Press, 2010, ISBN 1-4200-3522-3, S. 22.
  6. Uwe Kiencke, Michael Schwarz, Thomas Weickert: Signalverarbeitung: Zeit-Frequenz-Analyse und Schätzverfahren. Oldenbourg, 2008, ISBN 3-486-58668-8, S. 401.
  7. Peter Burger, Ute Diemar, Eberhard Kallenbach, Bernd Marx, Tom Ströhla: Theoretische Grundlagen der Elektrotechnik 2. Springer, 2006, ISBN 3-519-00525-5, S. 103–104.
  8. Claude Cohen-Tannoudji, Bernard Diu, Franck Laloë: Quantenmechanik, Band 1. 3. Auflage. de Gruyter, 2007, ISBN 3-11-019324-8, S. 90 f.

Weblinks

Wiktionary: Betragsquadrat – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen