Die Aufenthaltswahrscheinlichkeit $ P $ kennzeichnet in der Quantenphysik die Wahrscheinlichkeit, mit der ein Teilchen in einem bestimmten Bereich des (Orts-)Raumes anzutreffen ist. Sie wird durch Integration der Wahrscheinlichkeitsdichte $ \rho ({\vec {r}}) $ über diesen Bereich $ A $ bestimmt:
Nach der Kopenhagener Deutung der Quantenmechanik errechnet sich die Wahrscheinlichkeitsdichte als Betragsquadrat aus der Wellenfunktion $ \Psi $:
mit der komplex konjugierten Wellenfunktion $ \Psi ^{*} $.
Integriert man die Wahrscheinlichkeitsdichte in Kugelkoordinaten über die Winkel und nicht zusätzlich über den Radius, so erhält man (unter Berücksichtigung der Jacobi-Determinante) die radiale Wahrscheinlichkeitsdichtefunktion.
Im Gegensatz zur Wellenfunktion selbst ist die Wahrscheinlichkeitsdichte der Beobachtung zugänglich.
Das Orbitalmodell des Atombaus stützt sich maßgeblich auf Aufenthaltswahrscheinlichkeiten: die Positionen der Elektronen (in diesem Fall als Quantenobjekte anzusehen) sind unbestimmt; es gibt lediglich Bereiche, in denen die Wahrscheinlichkeit größer ist, dort ein Elektron anzutreffen; dies sind die Orbitale.