Unter einer Bewegungsgleichung versteht man eine mathematische Gleichung (oder auch ein Gleichungssystem), welche die räumliche und zeitliche Entwicklung eines mechanischen Systems unter Einwirkung äußerer Einflüsse vollständig beschreibt. In der Regel handelt es sich um Systeme von Differentialgleichungen zweiter Ordnung.
Diese Differentialgleichungen sind für viele Systeme nicht analytisch lösbar, sodass man bei der Lösung geeignete Näherungsverfahren anwenden muss.
Zum Aufstellen von Bewegungsgleichungen in der klassischen Physik wird
verwendet. Darauf basierend ergibt sich die Bewegungsgleichung der Quantenmechanik, die Schrödingergleichung.
In der Technischen Mechanik werden
verwendet.
Die Lösung der Bewegungsgleichung ist die Trajektorie, auf der sich das System bewegt. Sie ist, abgesehen von einigen einfachen Fällen (siehe Beispiele unten), meist nicht in analytisch geschlossener Form darstellbar und muss über numerische Methoden gewonnen werden. Dies ist z. B. zur Ermittlung der Trajektorien dreier Himmelskörper, die sich gegenseitig gravitativ anziehen, erforderlich (siehe Dreikörperproblem). Zur Lösung eines N-Teilchensystems lässt sich die discrete element method anwenden. In einfachen Fällen wird die geschlossene Lösung als „Bahngleichung“ bezeichnet.
Eine allgemeine Form der Bewegungsgleichung in der klassischen Physik lautet beispielsweise
Oder bekannter:
Auf der linken Seite steht der Trägheitsterm für das Teilchen der Masse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m , auf der rechten Seite werden alle auf das Teilchen wirkenden Kräfte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec F_i aufsummiert.
Die Bewegungsgleichung lautet in diesem Fall
mit:
Die Bahn erhält man durch zweimaliges Integrieren der Differentialgleichung:
mit den Anfangswerten:
Das Teilchen bewegt sich also geradlinig mit konstanter Geschwindigkeit. Die Masse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m spielt keine Rolle.
Ein Körper der Masse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m sei der Schwerkraft Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m\vec g ausgesetzt:
Die Bahngleichung lautet
und stellt den ballistischen Parabelwurf dar. Für $ {\vec {v}}_{0}={\vec {0}} $ erhält man den freien Fall. Im Fall der Schwerkraft spielt die Masse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m des Körpers also keine Rolle.
In der speziellen Relativitätstheorie wird die Viererkraft definiert als die Ableitung des relativistischen Impulses p nach der Eigenzeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tau , mit
wobei zwischen Eigenzeit und der Zeit t der Zusammenhang
gilt und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \gamma den Lorentzfaktor bezeichnet.
Aus dieser Bewegungsgleichung folgt, dass zwischen den klassischen Größen der räumlichen Kraft Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbf F und Beschleunigung $ \mathbf {a} $ zwar ein linearer Zusammenhang besteht, aber keine einfache Proportionalität mehr: Für Anteile von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbf F parallel zur Bewegungsrichtung gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbf F_{\| } = \gamma^3 m\mathbf a , für senkrechte Anteile hingegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbf F_{\perp} = \gamma m\mathbf a .[1]
Die Bewegung eines Körpers wird durch die Geodätengleichung der gekrümmten Raumzeit beschrieben, sofern nur gravitative Kräfte auf ihn einwirken. Dann bewegt sich der Körper entlang einer Geodäten der Raumzeit. Die Geodätengleichung lautet
wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Gamma_{\lambda \nu}^{\mu} ein Christoffelsymbol 2. Art ist, welches die Abhängigkeit des metrischen Tensors vom Raumzeitpunkt (Ereignis), d. h. der Krümmung der Raumzeit, charakterisiert.
In der Strukturdynamik ist die Bewegungsgleichung eines dynamisch belasteten Tragwerks die Grundlage der Berechnung:
Hierbei ist $ f(t) $ der Lastvektor des Systems. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): M,D und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): K sind die Masse-, Dämpfungs- und Steifigkeitsmatrizen des Tragwerks. Der Vektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x(t) enthält die Verschiebungsgrößen. Die matrizielle Aufbereitung entsprechend den Freiheitsgraden einer Struktur eignet sich sehr gut für eine Computerberechnung, zum Beispiel nach der Finite-Elemente-Methode.
In der Quantenmechanik tritt die Schrödingergleichung als Bewegungsgleichung auf. Für das einfache Problem des Teilchens im eindimensionalen Kastenpotential der Länge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): L mit unendlich hohen Wänden lautet die zeitunabhängige Schrödingergleichung:
mit
Die Energieeigenwerte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E_n sowie die zugehörigen Eigenfunktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \psi_{n}(x) , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n=1, 2, 3, \dots, \infty , lauten:
.