Elektronenspin ist die quantenmechanische Eigenschaft Spin von Elektronen. Diese Eigenschaft wurde 1925 erstmals an Elektronen entdeckt, danach auch an allen anderen Teilchenarten. Der Spin (von englisch spin ‚Drehung‘, ‚Drall‘) hat alle Eigenschaften eines klassischen mechanischen Drehimpulses, ausgenommen die, dass er durch die Drehbewegung einer Masse hervorgerufen wird.
Für jedes Elektron hat der Spin einen unveränderlichen Betrag, der durch die Spin-Quantenzahl s = 1/2 angegeben wird. Selbst wenn das Elektron mit kinetischer Energie Null ruht, hat es seinen Spin, der deshalb auch als Eigendrehimpuls bezeichnet wird. Wie oder wodurch der Spin zustande kommt, bleibt in der klassischen Physik unerklärbar. Anschauliche oder semi-klassische Beschreibungen sind daher unvollständig. Eine Erklärung für den Spin wurde 1928 in der Dirac-Gleichung gegeben. Dies führte zur Entwicklung der relativistischen Quantenmechanik.
Der Spin des Elektrons ist von fundamentaler Bedeutung für das physikalische Weltbild. Er spielt beim Aufbau der Atomhülle und damit für die Materie bis hin zur Festlegung ihrer makroskopischen Eigenschaften eine bestimmende Rolle.
Zu weiteren grundlegenden Eigenschaften des Spins siehe Hauptartikel: Spin.
Nachdem der Quantensprung von Elektronen im Atom (zwischen den genau vorgegeben, stabilen Bahnen) als maßgeblich für die Emission von Lichtwellen mit wohlbestimmten Frequenzen (Spektrallinien) erkannt worden war (überzeugend z. B. im bohrschen Atommodell 1913), stellte die schon lange beobachtete feine Aufspaltung vieler Linien weiterhin ein ungelöstes Problem dar. Zwar konnte eine zusätzliche Aufspaltung durch Anlegen eines starken Magnetfelds (Zeeman-Effekt, schon 1897 gefunden) im Prinzip durch eine magnetische Beeinflussung der Elektronenbewegung auf ihren stabilen Bahnen erklärt werden.
Diese Erklärung passte aber nur zu den Fällen, wo die Aufspaltung dreifach war (daher „normaler Zeeman-Effekt“ genannt). Im bohr-sommerfeldschen Atommodell von 1916 konnten höhere magnetische Aufspaltungen, wenn sie ungeradzahlig waren, durch die Richtungsquantelung des Bahndrehimpulses der Elektronenniveaus erklärt werden:
Das bohr-sommerfeldsche Modell konnte auch feine Aufspaltungen erklären, die nicht von einem Magnetfeld verursacht waren, denn es macht die Elektronenenergie bei gleicher Hauptquantenzahl aufgrund relativistischer Effekte auch etwas von
Zur Lösung dieses Rätsels schlugen Samuel Goudsmit und George Uhlenbeck 1925 vor[1][2], dem Elektron einen zusätzlichen Eigendrehimpuls Spin zuzuschreiben. Er musste eine halbzahlige Drehimpulsquantenzahl
Zur Rezeption dieser gewagten Idee ist anzumerken, dass ihre beiden Urheber sogleich wieder zurückschraken und die schon vorbereitete Veröffentlichung noch einmal zu verhindern versuchten. Ihr Institutschef Paul Ehrenfest untersagte es ihnen aber mit der Begründung: „Sie sind beide jung genug, um sich eine Dummheit leisten zu können.“[3] Physikalisch gewichtige Gegenargumente waren damals:
Deshalb widersprach zunächst auch Wolfgang Pauli der Idee des Eigendrehimpulses mit halbzahligem Wert, obwohl gerade er schon im Jahr zuvor dem Elektron zusätzlich zu den drei räumlichen Quantenzahlen eine innere zweiwertige Quantenzahl zugeschrieben hatte, um die Systematik der Spektren und den Schalenaufbau der Atomhülle zu erklären und sein paulisches Ausschließungsprinzip formulieren zu können. Diese Quantenzahl wurde nun als
Alle Teilchen, die elektrische Ladung und einen Drehimpuls besitzen, haben ein magnetisches Dipolmoment, oft veranschaulicht als ein kleiner Stabmagnet parallel zur Rotationsachse. Deswegen werden die Energieniveaus durch ein Magnetfeld beeinflusst (Zeeman-Effekt). Die klassische Physik macht zum Verhältnis zwischen der Größe des Drehimpulses und des magnetischen Moments eine eindeutige Aussage, die auch für den Bahndrehimpuls der Elektronen in der Atomhülle richtig ist (Larmor-Theorem s. o.). Zum Elektronenspin gehört aber ein (fast, s. u.) genau doppelt großes magnetisches Moment. Diese Korrektur wird mittels einer g-Faktor genannten Zahl berücksichtigt. Für Bahndrehimpuls gilt der klassische Wert
Die mit dem Elektronenspin verbundenen magnetischen Dipole machen sich makroskopisch direkt bemerkbar in Gestalt des permanenten Magnetismus aller magnetischen Werkstoffe. Diese Werkstoffe enthalten Atome der Elemente um Eisen oder der seltenen Erden mit etwa halb gefüllten inneren Schalen (3d- bzw. 4f-Schale). Die energetisch bevorzugte Konfiguration der Elektronen darin zeigt Parallelstellung aller Spins, während alle weiteren Drehimpulse sich zu Null addieren. Makroskopisch bemerkbarer (permanenter) Magnetismus tritt bei den Materialien ein, bei denen zusätzlich gilt, dass auch benachbarte Atome die parallele Ausrichtung ihrer magnetischen Momente energetisch bevorzugen. (Dies wird durch die Austauschwechselwirkung der Elektronen erklärt.) Der Ferromagnetismus erscheint deshalb mit dem anomalen Wert
Das magnetische Moment des Elektronenspins ermöglichte im Stern-Gerlach-Versuch den ersten direkten Nachweis der Richtungsquantelung. Die Effekte der magnetischen Elektronenspinresonanz werden zur detaillierten Untersuchung von paramagnetischen Stoffen genutzt.
Der Spin