Die atwoodsche Fallmaschine wurde 1784 von George Atwood entwickelt. Sie wurde als Nachweis für die Gesetze der gleichmäßig beschleunigten Bewegung konzipiert. Mit ihr kann man mit einfachen Mitteln statt der Fallbeschleunigung eine beliebig verringerte Beschleunigung erhalten.
Zwei Massestücke ($ M_{1} $ und $ M_{2} $) sind über eine drehbare Rolle mit einer Schnur verbunden. Die Rolle und die Schnur werden als masse- und reibungslos betrachtet.
Für die weitere Betrachtung wird bei beiden Massenstücken die gleiche Masse $ M $ vorausgesetzt, es herrscht also zunächst ein Kräftegleichgewicht. Dann hängt man an eines der beiden Massestücke ein weiteres Massestück der Masse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m , es ergibt sich eine gleichmäßig beschleunigte Bewegung. Der Wert der Beschleunigung lässt sich wie folgt berechnen:
Zur Begründung dieser Formel betrachtet man die Gewichtskräfte auf beiden Seiten, die sich als Produkt der jeweiligen Masse und der Fallbeschleunigung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): g berechnen lassen. Auf einer Seite (in der rechten Skizze links) erhält man den Kraftbetrag Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): F_1 = (M+m) g , auf der anderen Seite (in der rechten Skizze rechts) den Kraftbetrag $ F_{2}=Mg $. Da die Kräfte entgegengesetzt wirken, ergibt sich der Betrag der Gesamtkraft durch Subtraktion:
Da insgesamt die Masse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 2 M + m beschleunigt wird, ergibt sich aus dem zweiten newtonschen Gesetz
womit die obige Formel für die Beschleunigung bestätigt wird.
Die oben angegebene Formeln gelten exakt nur unter idealisierten Bedingungen. Ein realer Aufbau weist eine Reihe von Abweichungen auf, die in die Genauigkeit einer Messung der Erdbeschleunigung eingehen.
Eine schwingende atwoodsche Maschine (abgekürzt auch SAM) ist so aufgebaut, dass eine der beiden Massen in der gemeinsamen Ebene der Massen schwingen kann. Bei gewissen Verhältnissen der beteiligten Massen ergibt sich ein chaotisches Verhalten. Die schwingende atwoodsche Maschine besitzt zwei Freiheitsgrade der Bewegung, $ r $ und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \theta .
Die Lagrange-Funktion einer schwingenden atwoodschen Maschine ist:
Dabei bezeichnet Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): g die Erdbeschleunigung, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): T und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V die kinetische und potentielle Energie des Systems.