Baryzentrische Koordinaten

Baryzentrische Koordinaten

Datei:Baryzentr-ko-def-2d.svg
Die baryzentrischen Koordinaten eines Punktes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S (blau) sind die Verhältnisse dreier Massen in den Ecken eines Dreiecks (rot), deren Schwerpunkt (Massenmittelpunkt) der Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S ist. In diesem Beispiel hat Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S die baryzentrischen Koordinaten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (2:4:5) .
Die Verbindung zwischen Physik und Geometrie liefert die Gleichung des Hebelgesetzes: Danach ist das Verhältnis der Massen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m_1, m_2 gleich dem Verhältnis der Strecken Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): l_2, l_1 , die die Lage des Schwerpunktes beschreiben.

Baryzentrische Koordinaten (auch homogene baryzentrische Koordinaten) dienen in der linearen Algebra und in der Geometrie dazu, die Lage von Punkten in Bezug auf eine gegebene Strecke, ein gegebenes Dreieck, ein gegebenes Tetraeder oder allgemeiner ein gegebenes Simplex zu beschreiben.

Ebene baryzentrische Koordinaten eines Punktes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S kann man sich als Verhältnisse von drei Massen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m_1, m_2, m_3 vorstellen, die sich in den Ecken eines vorgegebenen Dreiecks befinden und deren Schwerpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S ist (siehe Bild). Da es dabei nur auf Verhältnisse ankommt, schreibt man Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (m_1:m_2:m_3) . Sind alle Massen gleich, ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S der geometrische Schwerpunkt des Dreiecks und hat die baryzentrischen Koordinaten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (1:1:1) . Ihre geometrische Bedeutung erhalten die baryzentrischen Koordinaten durch die folgenden Eigenschaften: Im 1-Dimensionalen ist das Massenverhältnis gleich einem Verhältnis von Teilstrecken (siehe 2. Bild), im 2-Dimensionalen sind die Massenverhältnisse gleich Flächenverhältnissen von Teildreiecken.

Baryzentrische Koordinaten wurden zuerst von A. F. Möbius 1827 in seinem Buch Der baryzentrische Calcul eingeführt.[1][2] Sie sind ein Spezialfall homogener Koordinaten. Ein wesentlicher Unterschied zu den üblichen homogenen Koordinaten, z. B. in der Ebene, ist die Beschreibung der Ferngerade durch die Gleichung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x_1+x_2+x_3=0 statt durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x_3=0 .

Insbesondere in der Dreiecksgeometrie spielen die baryzentrischen Koordinaten, neben den trilinearen Koordinaten, eine wesentliche Rolle. Überall, wo es um Verhältnisse von Strecken geht, wie zum Beispiel in dem Satz von Ceva, sind sie ein geeignetes Werkzeug. Aber nicht nur in der Geometrie, sondern auch im Bereich des computer-aided Design verwendet man sie zur Erzeugung von dreieckigen Flächenstücken, den dreieckigen Bézierflächen.[3][4]

In den Abschnitten Definition und Im Raum werden die in der Mathematik üblichen Bezeichnungen benutzt. In den Abschnitten Auf einer Gerade, In einer Ebene werden die Koordinaten mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (m_1:m_2), (m_1:m_2:m_3) bezeichnet, um an ihre Beziehung zu Massen und deren Schwerpunkt zu erinnern, was für das Verständnis oft eine Hilfe ist.

Definition und Eigenschaften

Definition

Es seien Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbf{x}_1, \dotsc, \mathbf{x}_n die Ortsvektoren der Ecken Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_1, \dotsc, X_n eines Simplex in einem affinen Raum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathcal A . Der affine Raum hat dann die Dimension Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n-1 . Falls es für einen Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P: \mathbf{p} in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathcal A Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \;a_1, \dotsc, a_n gibt, deren Summe nicht Null ist und die Gleichung

(G)Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \quad ( a_1 + \dotsb + a_n ) \mathbf{p} = a_1 \, \mathbf{x}_1 + \dotsb + a_n \, \mathbf{x}_n\ ,

erfüllt, sagt man Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a_1, \dotsc, a_n sind baryzentrische Koordinaten des Punktes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P bezüglich der Punkte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_1,\dotsc X_n und schreibt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P=(a_1:\dotsc :a_n) . Für die Ecken gilt offensichtlich

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \; X_1=(1: 0:0: \ldots: 0),\; X_2=(0: 1: 0 \dotsc: 0) \dotsc,\; X_n=(0: 0: 0: \dotsc: 1)\; .

Baryzentrische Koordinaten sind nicht eindeutig: Für jedes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \lambda ungleich Null beschreibt auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (\lambda a_1: \dotsc: \lambda a_n) den Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P . D.h.: Nur die Verhältnisse der Koordinaten sind wesentlich. An diese Eigenschaft soll die Schreibweise mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): : erinnern. Man kann baryzentrische Koordinaten als homogene Koordinaten eines Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (n-1) -dimensionalen projektiven Raums Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathcal P auffassen, von dem der affine Raum $ {\mathcal {A}} $ ein Teil ist. Und zwar sind die Punkte von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathcal A diejenigen Punkte von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathcal P , die nicht in der durch die Gleichung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \; a_1 + \dotsb + a_n = 0\; bestimmten Hyperebene (Fernhyperebene) liegen.

Gleichung (G) ist ein unterbestimmtes homogenes lineares Gleichungssystem, das sich in der üblichen Form

(G')Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \quad a_1(\mathbf{p}-\mathbf{x}_1)+ \dotsb + a_n(\mathbf{p}-\mathbf{x}_n) = \mathbf{0}

schreiben lässt.

Erfüllen die Koordinaten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a_1,\dotsc a_n zusätzlich die Normierungsbedingung

(N) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \quad a_1 + \dotsb + a_n = 1\ ,

so spricht man von normierten baryzentrischen Koordinaten. In diesem Fall sind die Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a_1,...a_n eindeutig bestimmt (s. unten) und man kann den Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P (Ursprungsgerade) auch als affinen Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (a_1,...,a_n) der Hyperebene des Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \R^n mit der Gleichung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a_1+...+a_n=1 auffassen. Um die Normierung formal sicherzustellen, kann man (N) nach einer Koordinate auflösen und in das n-tupel einfügen. Löst man z. B. nach $ a_{n} $ auf, ergibt sich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P=(a_1:...:1-a_1-...-a_{n-1}) .

Hinweis: Die Begriffe werden nicht einheitlich verwendet. Viele Autoren sprechen nur dann von baryzentrischen Koordinaten, wenn die Normierungsbedingung erfüllt ist.
Normierte baryzentrische Koordinaten lassen sich einfach ermitteln, indem man jede einzelne baryzentrische Koordinate durch die Summe der Koordinaten dividiert.

Eigenschaften

Punkt im Simplex:
Falls die Koordinaten positiv sind, so liegt der Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P in der konvexen Hülle von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_1, \dotsc,X_n , also im Simplex mit diesen Eckpunkten. Die Darstellung eines Punktes innerhalb einer konvexen Hülle als Summe von Eckpunkten eines Simplex wird affine Kombination oder baryzentrische Kombination genannt.

Massenmittelpunkt:
Wie man aus der Umstellung

(S)Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \quad \mathbf{p} = \frac{a_1 \mathbf{x}_1 + \dotsb + a_n \mathbf{x}_n}{a_1 + \dotsb + a_n}

der Definitionsgleichung (G) sieht, kann man Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P als Massenmittelpunkt (das Baryzentrum) einer Anordnung von Massen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a_1, \dotsc, a_n an den Eckpunkten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_1, \dotsc, X_n des Simplex auffassen. Dies ist der Ursprung des Begriffs baryzentrisch.
Physikalische Bedeutung der
Gleichung (G): Die Gesamtmasse im Schwerpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P verursacht im Nullpunkt dasselbe Drehmoment wie die Einzelmassen,
Gleichung (G'): Die Summe der von den Einzelmassen erzeugten Drehmomente ist im Schwerpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P gleich 0.

Mittelpunkt zweier Punkte:
Sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (p_1:...:p_n), (q_1:...:q_n) die normierten (!) baryzentrischen Darstellungen zweier Punkte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P:\mathbf p,Q:\mathbf q , dann hat der Mittelpunkt $ M:{\tfrac {1}{2}}(\mathbf {p} +\mathbf {q} ) $ die baryzentrische Darstellung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): M=(\frac{p_1+q_1}{2}:...:\frac{p_n+q_n}{2})=(p_1+q_1:...:p_n+q_n)\ .

Existenz, Eindeutigkeit normierter Koordinaten:
Normierte baryzentrische Koordinaten sind eindeutig bestimmt. Denn, versucht man das durch (G') und (N) beschriebene inhomogene lineare Gleichungssystem mit Hilfe der Cramerschen Regel zu lösen, ist die Determinante im Nenner ungleich Null, da sie, bis auf einen Faktor, im ebenen Fall (n=3) die orientierte Fläche des Dreiecks und im 3-dimensionalen Fall (n=4) das orientierte Volumen des Tetraeders ist (siehe unten).

Lässt man die Bedingung (N) wieder fallen, hat das lineare homogene System (G') 1-dimensionale Lösungen (Punkte des oben erwähnten projektiven Raums Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathcal P ). Für größeres Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n gilt Entsprechendes.

Unabhängigkeit von Nullpunkt und Skalierung:
Dass die baryzentrischen Koordinaten nicht von dem zufällig gewählten Nullpunkt des affinen Raums Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathcal A abhängen, erkennt man dadurch, dass eine Verschiebung der Vektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbf{p}, \mathbf{x}_1,... um einen festen Vektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbf{v} die Definitionsgleichung (G) unverändert lässt. Dasselbe gilt für eine uniforme Skalierung (Multiplikation der Vektoren mit einem festen Faktor ungleich Null).

Beispiel:
In der Ebene besteht ein Simplex aus 3 Punkten (Dreieck), d. h. es ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n=3 und jeder Punkt hat 3 baryzentrische Koordinaten: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P=(a_1:a_2:a_3) . Zum Beispiel hat der geometrische Schwerpunkt des Dreiecks die baryzentrische Darstellung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \;S=(1:1:1)\; , denn es ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \;\mathbf{s}=\tfrac 1 3 (\mathbf{x}_1+\mathbf{x}_2+\mathbf{x}_3) \; . Die normierte Darstellung ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \;S=(\tfrac 1 3:\tfrac 1 3:\tfrac 1 3)\; .

Vorteil, Nachteil:
Wie man in dem Beispiel sieht, lassen sich wesentliche Punkte z. B. von Dreiecken einheitlich und einfach beschreiben. Bei Berechnungen müssen nicht die speziellen (affinen) Koordinaten eines gegebenen Dreiecks berücksichtigt werden. Wie man affine Koordinaten in baryzentrische Koordinaten umrechnet, wird in den folgenden Abschnitten gezeigt. Ein gewisser Nachteil baryzentrischer Koordinaten ist allerdings: Sie sind nicht eindeutig (im nicht normierten Fall) und es gibt immer 1 Koordinate mehr als die affinen Koordinaten.

Unterschied zu anderen homogenen Koordinaten: Beispiel n=3
Üblicherweise führt man homogene Koordinaten so ein, dass die Ferngerade durch eine Koordinatenebene, z. B. durch $ a_{3}=0 $, beschrieben wird. Dies hat den Vorteil, dass ein einfacher Zusammenhang zu den affinen Koordinaten, die die zugehörige affine Ebene (projektive Ebene ohne die Punkte der Ferngerade) beschreiben, besteht: Ein affiner Punkt hat die Koordinaten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (a_1,a_2)=(a_1:a_2:1) . Es besteht allerdings der Nachteil, dass die zu den Koordinatenachsen gehörigen projektiven Punkte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (1:0:0),(0:1:0) keine affinen Punkte sind. Nur der Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (0:0:1) wird zu einem affinen Punkt. Baryzentrische Koordinaten haben keine so einfache Beziehung zu den affinen Koordinaten. Dafür liegen alle den Koordinatenachsen entsprechenden projektiven Punkte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (1:0:0),(0:1:0),(0:0:1) im affinen Bereich, denn die Ferngerade wird hier durch die Gleichung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a_1+a_2+a_3=0 beschrieben.

Auf einer Gerade (n=2, Strecke)

Der Schwerpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_s zweier Massen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m_1, m_2 , die auf der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x -Achse an den Stellen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x_1, x_2 platziert sind, ist die Stelle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x_s , wo das Hebelgesetz (Kraft x Kraftarm = Last x Lastarm, siehe 2. Bild) erfüllt ist. Genauer: Wo die Summe der Drehmomente gleich Null ist[5] und damit gilt:

(G'2) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \ m_1(x_s-x_1)+ m_2(x_s-x_2)=0

Diese Gleichung ist äquivalent zu (siehe Abschnitt Definition)

(G2) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \ (m_1+m_2)x_s=m_1x_1+m_2x_2 \; .

Auflösen nach $ x_{s} $ ergibt:

(S2) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \ x_s=\frac{m_1x_1+m_2x_2}{m_1+m_2}

Lässt man negative Massen zu, z. B. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m_1=1, m_2=-1+\tfrac 1 n , so ergibt sich aus (G2) für $ n\to \infty $ die Gesamtmasse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m_1+m_2=0 und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x_s=\infty .

Eine Lösung von (G'2) ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \;m_1=x_2-x_s, \; m_2=x_s-x_1\; . Alle Lösungen sind Vielfache davon. Also hat der Schwerpunkt die baryzentrische Darstellung (siehe Abschnitt Definition)

Baryzentrische Koordinaten als Verhältnis von Strecken
(B2) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \;X_s=(m_1:m_2)=(x_2-x_s:x_s-x_1)=(l_{\color{red}2}:l_{\color{red}1})

Dabei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \; l_1=x_s-x_1,\; l_2=x_2-x_s\; .

Datei:Baryzentr-ko-gerade.svg
Baryzentrische Koordinaten auf einer Gerade (unten). Der Mittelpunkt der Strecke Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_1, X_2 hat die baryzentrischen Koordinaten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (1:1)=(\tfrac 1 2:\tfrac 1 2)

Dieser einfache Zusammenhang der baryzentrischen Koordinaten mit Verhältnissen von Teilstrecken ist der Grund für ihre Bedeutung in der Dreiecksgeometrie.
Die Aussage (B2) ist der Lehrsatz in §21, S. 25, des Buches von Möbius.

Die normierten baryzentrischen Koordinaten müssen zusätzlich zu (G'2) die Bedingung

(N2) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \quad m_1+m_2=1

erfüllen. Löst man das inhomogene Gleichungssystem bestehend aus den Gleichungen (G'2), (N2) mit Hilfe der Cramerschen Regel, ergibt sich die normierte Darstellung

(NB2) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \ X_s=\big(\frac{x_2-x_s}{x_2-x_1}\; :\; \frac{x_s-x_1}{x_2-x_1}\big)=\big(\frac{l_2}{l_1+l_2}:\frac{l_1}{l_1+l_2}\big)\; .

Beispiel: Der Mittelpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tfrac{x_1+x_2}{2} der Punkte $ x_{1},x_{2} $ besitzt die baryzentrischen Koordinaten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (1:1) und in normierter Darstellung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (\tfrac 1 2:\tfrac 1 2) \; .

In einer Ebene (n=3, Dreieck)

Umrechnung der Koordinaten

Sind in den Ecken eines Dreiecks Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \; X_1=(x_1,y_1),\;X_2=(x_2,y_2),\;X_3=(x_3,y_3),\; drei Massen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m_1, m_2, m_3 platziert, so sind die Gleichgewichtsgleichungen für die Drehmomente um die Koordinatenachsen

(G'3)Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \quad \begin{array}{r} m_1(x_s-x_1)+m_2(x_s-x_2)+m_3(x_s-x_3) = 0\\ m_1(y_s-y_1)+m_2(y_s-y_2)+m_3(y_s-y_3) = 0 \end{array}

oder in der Form (siehe Definition)

(G3)Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \quad \begin{array}{c} (m_1+m_2+m_3)x_s = m_1x_1+m_2x_2+m_3x_3\\ (m_1+m_2+m_3)y_s = m_1y_1+m_2y_2+m_3y_3 \end{array}

Der Schwerpunkt hat die Koordinaten

(S3)Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \quad \begin{array}{c} x_s=\displaystyle \frac{m_1x_1+m_2x_2+m_3x_3}{m_1+m_2+m_3} \\ y_s=\displaystyle \frac{m_1y_1+m_2y_2+m_3y_3}{m_1+m_2+m_3}. \end{array}

Baryzentrische Koordinaten eines gegebenen Punktes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S=({\color{red}x_s},{\color{red}y_s}) , erhält man durch Lösen des unterbestimmten homogenen Systems (G'3) nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m_1, m_2, m_3 . Nimmt man die Normierungsgleichung

(N3) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \quad m_1+m_2+m_3=1
hinzu, ist das jetzt inhomogene LGS eindeutig und mit Hilfe der Cramerschen Regel lösbar. Es ergibt sich:
Fehler beim Erstellen des Vorschaubildes:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S=(x_s,y_s),\; X_i=(x_i,y_i)
(NB3) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \qquad \begin{array}{l} m_1=\displaystyle \frac{(x_2-{\color{red}x_s})(y_3-{\color{red}y_s})-(x_3-{\color{red}x_s})(y_2-{\color{red}y_s})} {(x_2-x_1)(y_3-y_2)-(y_2-y_1)(x_3-x_2)}\\ m_2=\displaystyle \frac{(x_3-{\color{red}x_s})(y_1-{\color{red}y_s})-(x_1-{\color{red}x_s})(y_3-{\color{red}y_s})} {(x_2-x_1)(y_3-y_2)-(y_2-y_1)(x_3-x_2)}\\ m_3=\displaystyle \frac{(x_1-{\color{red}x_s})(y_2-{\color{red}y_s})-(x_2-{\color{red}x_s})(y_1-{\color{red}y_s})} {(x_2-x_1)(y_3-y_2)-(y_2-y_1)(x_3-x_2)}\\ \end{array}
Der gemeinsame Nenner ist der doppelte Flächeninhalt des Dreiecks, also ungleich Null.
Wegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m_1+m_2+m_3=1 genügt es, zwei der drei Brüche zu berechnen.
Alle Zähler lassen sich als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 2 \times 2 -Determinanten schreiben. Verzichtet man auf die Normierung, darf bei den baryzentrischen Koordinaten der gemeinsame Nenner weggelassen werden:
(B3)Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \quad (m_1:m_2:m_3)=\Big( \left| \begin{array}{l} x_2\!-\!{\color{red}x_s} & x_3\!-\!{\color{red}x_s}\\ y_2\!-\!{\color{red}y_s} & y_3\!-\!{\color{red}y_s}\\ \end{array}\right| : \left| \begin{array}{l} x_3\!-\!{\color{red}x_s} & x_1\!-\!{\color{red}x_s}\\ y_3\!-\!{\color{red}y_s} & y_1\!-\!{\color{red}y_s}\\ \end{array} \right|: \left| \begin{array}{l}x_1\!-\!{\color{red}x_s} & x_2\!-\!{\color{red}x_s}\\ y_1\!-\!{\color{red}y_s} & y_2\!-\!{\color{red}y_s}\\ \end{array} \right| \Big)
Multipliziert man jede Determinante mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tfrac 1 2 , entstehen die orientierten Flächen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta_1, \Delta_2, \Delta_3 der Teildreiecke Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_2X_3S , $ X_{3}X_{1}S $, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_1X_2S (siehe auch den nächsten Abschnitt Beziehung zu trilineare Koordinaten). Damit gilt:
(BF3)Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \qquad (m_1:m_2:m_3)=(\Delta_1:\Delta_2:\Delta_3)

Aussage (BF3) ist der Lehrsatz in §23, S. 26, des Buches von Möbius.

Spezialfall: Koordinatendreieck:

Für das spezielle rechtwinklige Dreieck Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \;X_3=(0,0), X_1=(1,0), X_2=(0,1)\; als Bezugsdreieck hat ein Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (x,y) die einfachen baryzentrischen Koordinaten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (x:y:1-x-y) .

Geraden, Schnittpunkte, Parallelität

Datei:Baryzentr-ko-ebene.svg
In den Punkten $ X_{1},X_{2},X_{3} $ befinden sich die Massen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m_1, m_2, m_3 .
Die lilafarbigen parallelen Geraden haben die jeweils angegebenen Gleichungen. Ihr gemeinsamer Fernpunkt hat die Koordinaten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (-1:1:0).
Die Koordinaten der Rasterpunkte sind normiert.
  • Die Ecken des Dreiecks haben die homogenen Koordinaten
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_1=(1\!:\!0\!:\!0),\;X_2=(0\!:\!1\!:\!0),\;X_3=(0\!:\!0\!:\!1)\; .
  • Die Gerade durch die Punkte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_1 ,X_2 wird durch die Gleichung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m_3=0 beschrieben und hat den Fernpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (-1:1:0) . …
  • Die Ferngerade ist durch die Gleichung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \;m_1+m_2+m_3=0\; festgelegt.
  • Eine beliebige Gerade wird durch eine Gleichung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \; am_1+bm_2+cm_3=0\; beschrieben (s. homogene Koordinaten).
  • Drei Geraden
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a_1m_1+b_1m_2+c_1m_3=0,
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a_2m_1+b_2m_2+c_2m_3=0,
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a_3m_1+b_3m_2+c_3m_3=0
haben einen Punkt gemeinsam, wenn

$ \qquad \quad \left|{\begin{matrix}a_{1}&b_{1}&c_{1}\\a_{2}&b_{2}&c_{2}\\a_{3}&b_{3}&c_{3}\end{matrix}}\right|=0 $.

  • Zwei Geraden Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \; a_1m_1+b_1m_2+c_1m_3=0,\; a_2m_1+b_2m_2+c_2m_3=0\; sind parallel, wenn sie sich auf der Ferngerade schneiden, d. h., wenn

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \qquad \quad \left|\begin{matrix}a_1&b_1&c_1\\a_2&b_2&c_2\\1&1&1\end{matrix}\right| = 0 .

  • Drei Punkte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (m_1:m_2:m_3) , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (m'_1:m'_2:m'_3) und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (m''_1:m''_2:m''_3) liegen genau dann auf einer Geraden, wenn

$ \qquad \quad \left|{\begin{matrix}m_{1}&m_{2}&m_{3}\\m'_{1}&m'_{2}&m'_{3}\\m''_{1}&m''_{2}&m''_{3}\end{matrix}}\right|=0. $

  • Hieraus ergibt sich die Gleichung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \; am_1+bm_2+cm_3=0 \; einer Gerade durch zwei vorgegebene Punkte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (u_1:u_2:u_3),(v_1:v_2:v_3) in Determinantenform:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \qquad \quad\left|\begin{matrix}m_1&m_2&m_3\\u_1&u_2&u_3\\v_1&v_2&v_3\end{matrix}\right| = 0

Beziehung zu trilinearen Koordinaten

Datei:Baryzentr-ko-Flaeche.svg
Grundseite und Höhe eines Teildreiecks

Für die Flächen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta_1,\Delta_2,\Delta_3 der Teildreiecke in (BF3) gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta_i=\frac 1 2 s_id_i , wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): s_i,d_i die Grundseiten (Seiten des Dreiecks) und die Höhen der Teildreiecke sind (siehe Bild). Also gilt

(BT3) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \ (m_1:m_2:m_3)=(s_1d_1:s_2d_2:s_3d_3)\ ,

Die Beziehung (BT3) zeigt den einfachen Zusammenhang der baryzentrischen Koordinaten mit den trilinearen Koordinaten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (d_1:d_2:d_3) eines Punktes. Für ein gleichseitiges Dreieck sind die baryzentrischen und trilinearen Koordinaten gleich. Die Ferngerade hat in baryzentrischen Koordinaten die Gleichung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \; m_1+m_2+m_3=0\; . In trilinearen Koordinaten ist die Gleichung noch von den Seitenlängen $ s_{i} $ des Dreiecks abhängig: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \; s_1d_1+s_2d_2+s_3d_3=0\; .

Besondere Punkte, Eulergerade

geometrischer Schwerpunkt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S ist der geometrische Schwerpunkt, wenn alle Massen gleich sind. Seine baryzentrischen Koordinaten sind also $ \;(1:1:1)\;. $ Wegen (BF3) und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta=\tfrac 1 2 s_ih_i \; , \; \Delta_i=\tfrac 1 2s_id_i gilt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \quad \Delta_i=\frac 1 3 \Delta\quad und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \quad d_i=\frac 1 3 h_i\; .

(Siehe hierzu auch Geometrischer Schwerpunkt.)

Parameterdarstellung einer Gerade

Eine Gerade durch zwei Punkte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A=(a_1:a_2:a_3), B=(b_1:b_2:b_3) hat für Punkte $ \neq B $ die Darstellung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X(t)=\big(a_1+tb_1:a_2+tb_2:a_3+tb_3\big)\ , \ t\in \R\; .
Fehler beim Erstellen des Vorschaubildes:
Projektion eines Punktes auf die Seite gegenüber einer Ecke
Projektion auf eine Seite

Projiziert man einen Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P=(\mu_1:\mu_2:\mu_3) von der Ecke Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_3=(0:0:1) aus auf die gegenüberliegende Seite (die Gerade hat die Gleichung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m_3=0 ), so erhält man den Punkt $ Y_{3}=(\mu _{1}:\mu _{2}:0) $ (siehe Bild). Sind die Koordinaten von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P normiert, teilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P die Strecke Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_3Y_3 im Verhältnis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (1-\mu_3):\mu_3 . Ist z. B. der Punkt der geometrische Schwerpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S , so wird er auf die Seitenmitte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S_3 projiziert und teilt die Strecke Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_3S_3 im Verhältnis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 2:1 .
Entsprechendes gilt für die Projektionen von den anderen Ecken aus.

Inkreismittelpunkt, Ankreismittelpunkte
Fehler beim Erstellen des Vorschaubildes:
Zu Inkreismittelpunkt und Ankreismittelpunkte:
Die Flächeninhalte der Dreiecke Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_1X_2X_3 und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A_1X_2X_3 haben verschiedene Vorzeichen

Für den Inkreis des Dreiecks gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): d_i=r (Inkreisradius) und damit (s. (BT3)) hat der Inkreismittelpunkt die baryzentrischen Koordinaten $ (s_{1}:s_{2}:s_{3}) $ und wegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \;\Delta=\Delta_1+\Delta_2+\Delta_3=\tfrac 1 2 (s_1+s_2+s_3)r\; gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \;r=\tfrac{2\Delta}{s_1+s_2+s_3} \; . Mit Hilfe des Sinussatzes ergibt sich für den Inkreismittelpunkt auch eine Darstellung mit den Winkeln:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): I=(s_1:s_2:s_3)=(\sin\varphi_1:\sin\varphi_2:\sin\varphi_3)\; ,

wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \varphi_i der Winkel bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_i ist.

Die Winkelhalbierende der Ecke Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_3 (Gerade Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_3I ) hat die Gleichung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): s_2m_1-s_1m_2=0\ .

Sie schneidet die Seite Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_1X_2 (Gleichung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m_3=0 ) im Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): I_3=(s_1:s_2:0) . (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): I_3 kann auch als Projektion von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): I auf die Seite Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_1X_2 angesehen werden.) Wegen (B2) gilt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |X_1I_3|:|X_2I_3|=s_2:s_1 \ . Analog für die anderen Winkelhalbierenden.

Dies ist der Winkelhalbierendensatz für das Dreieck Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_1X_2X_3 .

Da die Dreiecksflächen orientiert sind, kann Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta_i und damit auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): d_i negative Werte annehmen, jenachdem, ob $ P $ auf derselben Seite der zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): s_i gehörigen Dreiecksseite liegt wie die Ecke Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_i oder nicht. Beim Inkreismittelpunkt haben alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): d_i dasselbe Vorzeichen. Bei einem Ankreismittelpunkt haben (wie beim Inkreismittelpunkt) alle Abstände die Länge des Ankreisradius, aber einer der Abstände hat ein von den beiden anderen verschiedenes Vorzeichen. Damit ergeben sich die baryzentrischen Darstellungen der Ankreismittelpunkte:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A_1=(-s_1:s_2:s_3),\quad A_2=(s_1:-s_2:s_3),\quad A_3=(s_1:s_2:-s_3)\ .

Analog zum Inkreisradius ergibt sich für die Ankreisradien:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): r_1=\frac{2\Delta}{-s_1+s_2+s_3},\quad r_2=\frac{2\Delta}{s_1-s_2+s_3},\quad r_3=\frac{2\Delta}{s_1+s_2-s_3}\ .
Datei:Baryko-nagel-punkt.svg
$ N $: Nagel-Punkt. Er liegt mit dem geometrischen Schwerpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S und dem Inkreismittelpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): I auf einer Gerade. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S teilt die Strecke Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): NI im Verhältnis 2:1
Nagelpunkt

Aus der Beschreibung der Lage der Berührpunkte der Ankreise auf den Dreiecksseiten erkennt man ihre baryzentrische Darstellung:

$ B_{1}=(0:s_{1}-s_{2}+s_{3}:s_{1}+s_{2}-s_{3}), $
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): B_2=(-s_1+s_2+s_3:0:s_1+s_2-s_3),
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): B_3=(-s_1+s_2+s_3:s_1-s_2+s_3:0) \ .

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): B_i ist offensichtlich die Projektion (siehe oben) des Punktes

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): N=(-s_1+s_2+s_3:s_1-s_2+s_3:s_1+s_2-s_3)

von der Ecke Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_i aus auf die gegenüberliegende Seite. D.h.:

Die drei Geraden Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \overline{X_1B_1}, \overline{X_2B_2}, \overline{X_3B_3} schneiden sich im Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): N , dem Nagel-Punkt.

Die Matrix

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{pmatrix} 0 & 1&1\\ 1 & 0&1\\ 1&1&0 \end{pmatrix}

beschreibt (in baryzentrischen Koordinaten) die zentrische Streckung am geometrischen Schwerpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S mit dem Faktor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): -\tfrac12 (siehe Abschnitt Steiner-Ellipse, Steiner-Inellipse). Bildet man Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): N damit ab, erhält man den Inkreismittelpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): I . Dies zeigt:

Die Punkte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): N,S,I liegen auf einer Gerade durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S teilt die Strecke Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): NI im Verhältnis 2:1.
Datei:Baryko-umkreismittelpunkt.svg
Umkreismittelpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): U
Umkreismittelpunkt

Der Umkreismittelpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): U hat zu den Ecken den gleichen Abstand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): R , den Umkreisradius. Der Winkel bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): U im Teildreieck Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_1,X_2,U ist wegen des Kreiswinkelsatzes doppelt so groß wie der Winkel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \varphi_3 bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_3 . Also ist die Fläche Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta_3=\tfrac 1 2 R^2\sin2\varphi_3 . Entsprechendes gilt für $ \Delta _{1},\Delta _{2} $. Damit sind die baryzentrischen Koordinaten des Umkreismittelpunktes

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (\sin2\varphi_1:\sin2\varphi_2:\sin2\varphi_3)\ .

Aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \; \sin2\varphi_i=2\sin\varphi_i\cos\varphi_i,\; \sin\varphi_i=\tfrac{s_i}{2R}\; und den Kosinussätzen für die drei Winkel ergibt sich die winkelfreie Darstellung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \big(s_1^2(-s_1^2+s_2^2+s_3^2):s_2^2(s_1^2-s_2^2+s_3^2):s_3^2(s_1^2+s_2^2-s_3^2)\big)\ .
Datei:Baryko-hoehenschnittpunkt.svg
Höhenschnittpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): H
Höhenschnittpunkt

Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): H=(m_1:m_2:m_3) der Höhenschnittpunkt, so ist $ P_{3}=(m_{1}:m_{2}:0) $ der Fußpunkt der Höhe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): h_3 (siehe Bild) und es gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \; \tan\varphi_1=\tfrac{h_3}{|P_3X_1|},\; \tan\varphi_2=\tfrac{h_3}{|P_3X_2|}\; Wegen (B2) ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \; \tan\varphi_1:\tan\varphi_2=|P_3X_2|:|P_3X_1|=m_1:m_2\; . Analog ergeben sich die anderen Verhältnisse. Damit hat der Höhenschnittpunkt die baryzentrischen Koordinaten

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (\tan\varphi_1:\tan\varphi_2:\tan\varphi_3)\ .

Falls ein Winkel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 90^\circ ist, z. B. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \varphi_3=90^\circ , so ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): H=X_3 .

Spieker-Punkt
Fehler beim Erstellen des Vorschaubildes:
Spieker-Punkt eines Dreiecks

Belegt man die Seiten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_2X_3,X_3X_1,X_1X_2 eines Dreiecks Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_1X_2X_3 gleichmäßig mit Masse, so nennt man den zugehörigen Kantenschwerpunkt Spieker-Punkt. (Ecken- und Flächenschwerpunkt eines Dreiecks sind identisch: der Schnittpunkt der Seitenhalbierenden.) Denkt man sich die Masse einer Seite in ihrem Schwerpunkt, dem Mittelpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): M_i konzentriert, so ist der Spieker-Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathcal S=(x_s,y_s) der Schwerpunkt des Dreiecks Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): M_1M_2M_3 mit den Seitenlängen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): s_1,s_2,s_3 als Massenbelegungen in den Ecken. Aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): M_1=(\tfrac{x_2+x_3}{2},\tfrac{y_2+y_3}{2}), ... und (S3) folgt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x_s=\frac{s_1\frac{x_2+x_3}{2}+s_2\frac{x_1+x_3}{2}+s_3\frac{x_1+x_2}{2}}{s_1+s_2+s_3}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \quad=\frac{(s_2+s_3)x_1+(s_1+s_3)x_2+(s_1+s_2)x_3}{2(s_1+s_2+s_3)}\ .

Analog ergibt sich die y-Koordinate.

Spieker-Punkt als Mittelpunkt des Inkreises des Dreiecks Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): M_1M_2M_3

Hieraus erkennt man die baryzentrischen Koordinaten des Spieker-Punktes:

$ {\mathcal {S}}=(s_{2}+s_{3}:s_{1}+s_{3}:s_{1}+s_{2})\ . $

Bedeutung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathcal S für das Dreieck Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): M_1M_2M_3 :
Aus den obigen Überlegungen (Masse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): s_i im Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): M_i ) folgt direkt die baryzentrische Darstellung von $ {\mathcal {S}} $ bezüglich des (grünen) Dreiecks Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): M_1M_2M_3 :

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathcal S=(s_1:s_2:s_3)_M=\big(\tfrac{s_1}{2}:\tfrac{s_2}{2}:\tfrac{s_3}{2}\big)_M

Da Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tfrac{s_i}{2} die Länge der dem Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): M_i gegenüberliegenden (grünen) Seite ist, ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathcal S der Inkreismittelpunkt = Schnittpunkt der Winkelhalbierenden des Dreiecks Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): M_1M_2M_3 (siehe oben). Diese Eigenschaft liefert die Möglichkeit den Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathcal S zeichnerisch zu bestimmen.

Eulergerade
Datei:Baryko-euler-gerade.svg
Eulergerade eines Dreiecks

Der geometrische Schwerpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S , der Umkreismittelpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): U und der Höhenschnittpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): H liegen auf einer Gerade, der Eulergerade. Denn, führt man am Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S eine zentrische Streckung mit Streckfaktor $ -{\tfrac {1}{2}} $ durch, wird jede Ecke auf den Mittelpunkt der ihr gegenüberliegenden Seite abgebildet (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S teilt jede Seitenhalbierende im Verhältnis 2:1) und die Höhen werden auf die Mittelsenkrechten abgebildet. Also geht Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): H in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): U über und beide Punkte liegen auf einer gemeinsamen Gerade durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S . Der Umkreis geht dabei in den Kreis durch die Seitenmitten, den Feuerbachkreis, über, dessen Mittelpunkt (Bild von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): U ) also auch auf der Eulergerade liegt.

Die Gleichung der Eulergerade in baryzentrischen Koordinaten ist (s. oben)

$ \ \left|{\begin{matrix}m_{1}&m_{2}&m_{3}\\1&1&1\\\sin 2\varphi _{1}&\sin 2\varphi _{2}&\sin 2\varphi _{3}\end{matrix}}\right|= $
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \ m_1(\sin2\varphi_3-\sin2\varphi_2)+m_2(\sin2\varphi_1-\sin2\varphi_3)+m_3(\sin2\varphi_2-\sin2\varphi_1)= 0 \

oder unter Verwendung von Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): H :

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \ m_1(\tan\varphi_3-\tan\varphi_2)+m_2(\tan\varphi_1-\tan\varphi_3)+m_3(\tan\varphi_2-\tan\varphi_1)= 0 \ .

Gleichseitige Dreiecke besitzen keine Eulergerade, da Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S=H=U ist.

Ist das Dreieck gleichschenklig, aber nicht gleichseitig, z. B. $ \varphi _{1}=\varphi _{2} $, so hat die Eulergerade die Gleichung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \; m_1-m_2=0\; und ist gleich der Seitenhalbierenden durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_3 . Sie enthält dann auch den Inkreismittelpunkt.

Ist das Dreieck rechtwinklig, z. B. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \varphi_3=90^\circ , so ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \varphi_2=90^\circ-\varphi_1 \; \to \;\sin 2\varphi_2=\sin 2\varphi_1 und die Eulergerade hat die Gleichung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \; m_1-m_2=0\; und ist die Seitenhalbierende zur Hypotenuse.

Satz von Ceva

Fehler beim Erstellen des Vorschaubildes:
Satz von Ceva
Satz von Ceva

Ist P ein Punkt innerhalb des Dreiecks Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_1, X_2, X_3 und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P_i der Schnittpunkt der Gerade Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \overline{PX_i} mit der Seite Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_jX_k (siehe Bild), so gilt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{|X_2P_1|}{|X_3P_1|}\cdot\frac{|X_3P_2|}{|X_1P_2|}\cdot\frac{|X_1P_3|}{|X_2P_3|}=1\; .
Beweis

Mit den Punkten in baryzentrischen Koordinaten:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_1=(1:0:0),\; X_2=(0:1:0),\; X_3=(0:0:1)
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P=(m_1:m_2:m_3)

ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P_1=(0:m_2:m_3) (siehe Besondere Punkte). Aus B2 erhält man Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |X_2P_1|:|X_3P_1|=m_3:m_2\; . Führt man diese Überlegungen auch für diePunkte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P_2,P_3 durch, ergibt sich

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{|X_2P_1|}{|X_3P_1|}\cdot\frac{|X_3P_2|}{|X_1P_2|}\cdot\frac{|X_1P_3|}{|X_2P_3|}=\frac{m_3}{m_2}\cdot \frac{m_1}{m_3}\cdot \frac{m_2}{m_1}= 1\; .

Steiner-Ellipse, Steiner-Inellipse

Die eindeutig bestimmte Ellipse durch die Ecken des (beliebigen) Dreiecks Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_1,X_2,X_3 , deren Mittelpunkt der geometrische Schwerpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S ist, heißt Steiner-Ellipse. In baryzentrischen Koordinaten wird sie durch die Gleichung

(SE)$ \quad m_{1}m_{2}+m_{2}m_{3}+m_{3}m_{1}=0 $

beschrieben.

Fehler beim Erstellen des Vorschaubildes:
Steiner-Ellipse

Man prüft leicht nach, dass die sechs Punkte

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_1=(1:0:0),\ X_2=(0:1:0),\ \ X_3=(0:0:1),
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Y_1=(-1:2:2),Y_2=(2:-1:2),Y_3=(2:2:-1)\;

die Gleichung (SE) erfüllen und, dass der Schwerpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S=(1:1:1) der Mittelpunkt (siehe Abschnitt Definition) der Paare Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_i,Y_i ist. Die Gleichung (SE) muss also einen nicht ausgearteten Kegelschnitt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathcal k (Ellipse oder Hyperbel oder Parabel) beschreiben. Da aus den Gleichungen

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m_1m_2+m_2m_3+m_3m_1=0, \quad m_1+m_2+m_3=0\quad der Widerspruch
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 0=(m_1+m_2+m_3)^2
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \ =m_1^2+m_2^2+m_3^2+2(m_1m_2+m_2m_3+m_3m_1)
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \ =m_1^2+m_2^2+m_3^2\ne 0 \ .

folgt, hat Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathcal k mit der Ferngerade keinen Punkt gemeinsam, d. h. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathcal k ist eine Ellipse.

Die Spiegelung am Punkt $ S $ lässt das Sechseck Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_1X_2X_3Y_1Y_2Y_3 und damit auch die Ellipse invariant (Eine Ellipse ist durch 5 ihrer Punkte eindeutig bestimmt). Also ist der Symmetriepunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S der Mittelpunkt der Ellipse.

Da der Mittelpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): M_3 der Sehne Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_1X_2 auf dem Durchmesser Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_3Y_3 liegt, muss die Tangente in $ X_{3} $ parallel zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_1X_2 sein (siehe Ellipse). Sie hat die Gleichung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m_1+m_2=0 . Schneidet man die Parallele zur Tangente durch den Mittelpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S (sie hat die Gleichung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m_1+m_2-2m_3=0 ) mit der Ellipse (SE) erhält man die zwei zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_3 konjugierten Punkte (siehe Steiner-Ellipse)

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): D_3=(1-\sqrt 3:1+\sqrt 3:1),\quad D'_3=(1+\sqrt 3:1-\sqrt 3:1)\ .

Entsprechendes gilt für die Tangenten in den anderen Ecken.

Steiner-Inellipse (grün)

Bildet man die Steiner-Ellipse mit der zentrischen Streckung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \sigma an ihrem Mittelpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S mit Faktor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): -\tfrac 1 2 ab, erhält man also eine Ellipse mit demselben Mittelpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S , die die Dreiecksseiten in deren Mittelpunkten berührt. Dies ist die Steiner-Inellipse des Dreiecks. Wegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \; M_1=(0:1:1),\; M_2=(1:0:1),\; M_3=(1:1:0)\; ist die Abbildungsmatrix von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \sigma

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{pmatrix} 0 & 1&1\\ 1 & 0&1\\ 1&1&0 \end{pmatrix} \ .

Transformiert man die Gleichung (SE) der Steiner-Ellipse mit dieser Matrix, ergibt sich die Gleichung der Steiner-Inellipse in baryzentrischen Koordinaten:

(SIE)Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \quad m_1^2+m_2^2+m_3^2-2(m_1m_2+m_2m_3+m_3m_1)=0\ .
Fehler beim Erstellen des Vorschaubildes:
Steiner-Ellipsen als Kegel in (homogenen) baryzentrischen Koordinaten und in normierten baryzentrischen Koordinaten als Kreise in der Ebene Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m_1+m_2+m_3=1
3d-Darstellungen

1) Die durch die Gleichung (SE) definierte Quadrik Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathcal Q_1 im Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \R^3 mit (wie üblich) orthogonalen Koordinatenachsen ist ein gerader Kreiskegel mit dem Nullpunkt als Spitze, der die Koordinatenachsen enthält und die Gerade $ t(1,1,1)^{T} $ als Achse besitzt. Denn für die Schnittkurve der Ebene Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m_1+m_2+m_3=1 und der Quadrik mit der Gleichung (SE) gilt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 1=(m_1+m_2+m_3)^2
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \ =m_1^2+m_2^2+m_3^2+2(m_1m_2+m_2m_3+m_3m_1)
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \ =m_1^2+m_2^2+m_3^2\ .

D.h.: die Schnittkurve ist auch ein ebener Schnitt der Einheitskugel und damit ein Kreis (im Bild lila).

2) Analoge Überlegungen für die durch die Gleichung (SIE) definierte Quadrik $ {\mathcal {Q}}_{2} $ zeigen: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathcal Q_2 ist auch ein gerader Kreiskegel mit dem Nullpunkt als Spitze und der Gerade Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t(1,1,1)^T als Achse. Der Basiskreis ist der Schnitt der Ebene Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m_1+m_2+m_3=1 mit der kleineren Kugel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m_1^2+m_2^2+m_3^2=\tfrac 1 2 (im Bild grün). Schneidet man den Kegel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathcal Q_2 mit der Koordinatenebene Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m_1=0 , ergibt sich die Ursprungsgerade Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t(0,1,1)^T , d. h. der Kegel berührt die Koordinatenebene. Dies gilt auch für die anderen Koordinatenebenen.

3) In normierten baryzentrischen Koordinaten (d. h. in der Ebene Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m_1+m_2+m_3=1 ) erscheint das gegebene Dreieck gleichseitig und die Steiner-Ellipsen sind dessen Umkreis und Inkreis.

4) Setzt man keine orthogonalen Koordinaten des Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \R^3 voraus, gilt nur: Die Kegel sind elliptisch, das Dreieck ist allgemein und die Kreise sind Ellipsen. Inzidenzen und Berührbeziehungen bleiben erhalten.

5) Wählt man, wie bei nicht baryzentrischen homogenen Koordinaten üblich, die Ursprungsebene Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m_3=0 als Ferngerade und setzt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x=\tfrac{m_1}{m_3}, y=\tfrac{m_2}{m_3} , so beschreibt die Gleichung (SE) im affinen Bereich (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m_3\ne 0 ) die Hyperbel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): y=\tfrac{1}{x+1}-1 . In diesem Fall sind die Punkte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (1:0:0),(0:1:0) Fernpunkte und zwar die Fernpunkte der Asymptoten. Im Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \R^3 kann man sich die Hyperbel als Schnittkurve des Kegels Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathcal Q_1 mit der Ebene Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m_3=1 vorstellen.

6) Siehe hierzu auch: Inellipse.

Im Raum (n=4, Tetraeder)

Berechnung und Eigenschaften

Im 3-dimensionalen Raum ist ein Simplex ein Tetraeder mit den Ecken Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4 . Um die baryzentrischen Koordinaten eines Punktes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbf{p} bezgl. des gegebenen Tetraeders zu bestimmen, muss man, analog dem 2-dimensionalen Fall (Dreieck), das homogene lineare Gleichungssystem (siehe Abschnitt Definition)

(G'4)Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \quad a_1(\mathbf{x}_1-\mathbf{p})+a_2(\mathbf{x}_2-\mathbf{p})+a_3(\mathbf{x}_3-\mathbf{p})+a_4(\mathbf{x}_4-\mathbf{p})=0

für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a_1, a_2, a_3, a_4 lösen. Wie im ebenen Fall fügt man hier auch die Normierungsgleichung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a_1+a_2+a_3+a_4=1 hinzu und löst das LGS mit Hilfe der Cramerschen Regel. Mit den Abkürzungen

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V_1=\frac 1 6 \det(\mathbf{x}_2-\mathbf{p},\mathbf{x}_3-\mathbf{p},\mathbf{x}_4-\mathbf{p}),\quad V_2=\frac 1 6 \det(\mathbf{x}_3-\mathbf{p},\mathbf{x}_4-\mathbf{p},\mathbf{x}_1-\mathbf{p}),
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V_3=\frac 1 6\det(\mathbf{x}_4-\mathbf{p},\mathbf{x}_1-\mathbf{p},\mathbf{x}_2-\mathbf{p}) ,\quad V_4=\frac 1 6 \det(\mathbf{x}_1-\mathbf{p},\mathbf{x}_2-\mathbf{p},\mathbf{x}_3-\mathbf{p})
Baryzentrische Koordinaten bezgl. eines Tetraeders (im Raum)

erhält man für die baryzentrischen Koordinaten von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbf{p} :

(BV4) $ \ (a_{1}:a_{2}:a_{3}:a_{4})=(V_{1}:V_{2}:V_{3}:V_{4}) $

Dabei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V_i das Volumen des Teiltetraeders, der aus dem gegebenen Tetraeder entsteht, indem man Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbf{x}_i durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbf{p} ersetzt (s. Bild).

Aussage (BV4) ist der Lehrsatz in §25, S. 28, des Buches von Möbius.

Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta_i die Grundfläche (Seitenfläche des Tetraeders) und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): d_i die Höhe des $ i $-ten Teiltetraeders, so gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V_i=\tfrac 1 3\Delta_id_i und

  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (a_1:a_2:a_3:a_4)=(\Delta_1d_1:\Delta_2d_2:\Delta_3d_3:\Delta_4d_4)\ .

Besondere Punkte

Geometrischer Schwerpunkt

Der geometrische Schwerpunkt hat die baryzentrischen Koordinaten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (1:1:1:1) . Damit ist

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V_i=\frac 1 3 \Delta_i d_i=\frac 1 4 V=\frac 1 4 \frac 1 3\Delta_ih_i \; ,

wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V das Volumen des gegebenen Tetraeders und $ h_{i} $ die Höhe des Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): i -ten Punktes über dem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): i -ten Seitendreieck (s. Bild) ist. Also gilt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): d_i=\frac{h_i}{ 4}

(Vergleiche die entsprechende Aussage im ebenen Fall.)

Inkugelmittelpunkt

Für den Mittelpunkt der Inkugel ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): d_i=r (Radius der Inkugel) und damit

$ (a_{1}:a_{2}:a_{3}:a_{4})=(\Delta _{1}:\Delta _{2}:\Delta _{3}:\Delta _{4})\ $ und
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): r=\frac{3V}{\Delta_1+\Delta_2+\Delta_3+\Delta_4}\; ,

wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V=V_1+V_2+V_3+V_4 das Volumen des gegebenen Tetraeders ist.

Projektion eines Punktes auf eine Koordinatenebene

Analog zum ebenen Fall (siehe oben) ist die Projektion eines Punktes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P=(\alpha_1:\alpha_2:\alpha_3:\alpha_4) von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_1=(1:0:0:0) aus auf die gegenüber liegende Ebene durch $ X_{2},X_{3},X_{4} $ (sie hat die Gleichung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a_1=0 ) der Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \;Y_1=(0:\alpha_2:\alpha_3:\alpha_4)\; . Falls die Koordinaten von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P normiert sind, teilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P die Strecke Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_1Y_1 im Verhältnis $ (1-\alpha _{1}):\alpha _{1} $. Entsprechendes gilt für die anderen 3 Projektionen.

Satz von Commandino

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S : Schwerpunkt des Tetraeders,
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S_i : Schwerpunkte der Dreiecke

Projiziert man den geometrischen Schwerpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S=(1:1:1:1) von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_1=(1:0:0:0) aus auf die gegenüberliegende Ebene mit der Gleichung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a_1=0 , erhält man den Schwerpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S_1=(0:1:1:1) des Dreiecks Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_2X_3X_4 . Entsprechendes gilt für die anderen Projektionen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S . Also gilt (siehe den vorigen Abschnitt):

Die Gerade durch die Ecke Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_i und den geometrischen Schwerpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S des Tetraeders schneidet die gegenüberliegende Dreiecksebene im Schwerpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S_i des Dreiecks. Dabei teilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S die Strecke $ X_{i}S_{i} $ im Verhältnis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 3:1 .

Dies ist der Satz von Commandino.

Hyperboloid durch die Punkte eines Tetraeders

Tetraeder auf einem einschaligen Hyperboloid

Ein einschaliges Hyperboloid ist eine Quadrik, die 2 Scharen von Geraden enthält. In geeigneten homogenen Koordinaten kann man es durch die Gleichung

(H)Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \quad a_1a_3-a_2a_4=0

beschreiben[6] (siehe einschaliges Hyperboloid). Das Hyperboloid enthält die Punkte

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_1=(1:0:0:0), \;X_2=(0:1:0:0),
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_3=(0:0:1:0), \; X_4=(0:0:0:1)\ .

Man rechnet leicht nach, dass

(PH) $ \quad P(u,v)={\big (}(1-u)(1-v):u(1-v):uv:(1-u)v{\big )} $

eine Parameterdarstellung des Hyperboloids ist. Dabei gilt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_1=P(0,0), \ X_2=P(1,0), \ X_3=P(1,1), \ X_4=P(0,1) \ und
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S=(1:1:1:1)=P(\tfrac 1 2,\tfrac 1 2) \ .

Die Parameterlinien (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): u = const oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v = const) sind Geraden. Da die Summe der baryzentrischen Koordinaten stets Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 1 ist, werden allerdings die Punkte des Hyperboloids in der Ebene $ a_{1}+a_{2}+a_{3}+a_{4}=0 $ nicht erfasst. Dies ist bei Einführung baryzentrischer Koordinaten kein Nachteil.

Fasst man Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a_1,a_2,a_3,a_4 als baryzentrische Koordinaten auf, entsprechen die Punkte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_1,X_2,X_3,X_4 den Ecken eines Tetraeders (in einem affinen Raum) auf einem Hyperboloid Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathcal H , das die Geraden Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \overline{X_1X_2}, \overline{X_2X_3},\overline{X_3X_4},\overline{X_4X_1} enthält (siehe Bild). Die beiden Geraden Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \overline{X_2X_4}, \overline{X_1X_3} liegen nicht auf dem Hyperboloid ! Rechnet man die normierten baryzentrischen Koordinaten in affine Koordinaten um (siehe (S) im Abschnitt Definition), erhält man die affine Parameterdarstellung des Hyperboloids:

(APH) $ \quad \mathbf {p} (u,v)=(1-u)(1-v)\mathbf {x} _{1}+u(1-v)\mathbf {x} _{2}+uv\mathbf {x} _{3}+(1-u)v\mathbf {x} _{4}\ . $

Dies ist die Darstellung des Hyperboloids als bilineare Interpolationsfläche des räumlichen Vierecks Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_1,X_2,X_3,X_4 .

Eigenschaften

Das Hyperboloid hat mit der Fernebene Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a_1+a_2+a_3+a_4=0 die beiden sich im Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A=(1:-1:1:-1) schneidenden Geraden

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): g_1: a_1+a_2=0,\; a_3+a_4=0,
$ g_{2}:a_{2}+a_{3}=0,\;a_{1}+a_{4}=0\; $

gemeinsam und ist deshalb affin ein

  • hyperbolisches Paraboloid. (Das obige Bild ist also projektiv zu verstehen.)
  • Die Fernebene ist die Tangentialebene im Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A .
  • Der Schwerpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S=(1:1:1:1): \tfrac 1 4 (\mathbf x_1+\mathbf x_2+\mathbf x_3+\mathbf x_4) des Tetraeders liegt auf dem Hyperboloid.
Datei:Baryko-tetraeder-koorda.svg
Hyperbolisches Paraboloid (affiner Teil eines projektiven einschaligen Hyperboloids) durch die Ecken eines Tetraeders mit Punkten auf den Koordinatenachsen

Die Gerade Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \; g_3: a_1-a_3=0,\; a_2-a_4=0\; geht durch die Mittelpunkte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): M_{13}=(1:0:1:0),\; M_{24}=(0:1:0:1) der Tetraederkanten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_1X_3 bzw. $ X_{2}X_{4} $ und durch den Fernpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A=(1:-1:1:-1) . Dies bedeutet affin:

  • Die Achsen der Parabeln auf dem hyperbolischen Paraboloid sind alle parallel zur Gerade Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): g_3 durch die Mittelpunkte $ M_{13}:{\tfrac {1}{2}}(\mathbf {x} _{1}+\mathbf {x} _{3}),\;M_{24}:{\tfrac {1}{2}}(\mathbf {x} _{2}+\mathbf {x} _{4}) $ (siehe hyperbolisches Paraboloid). Der Schwerpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S ist der Mittelpunkt der Punkte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): M_{13},M_{24} .
Beispiel

Das Bild zeigt das Beispiel mit

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbf x_1=(1,0,0)^T,\; \mathbf x_2=(0,1,0)^T,\;
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbf x_3=(0,0,1)^T,\; \mathbf x_4=(0,0,0)^T,\;

Die Parameterdarstellung ist dann

$ \mathbf {p} (u,v)={\big (}(1-u)(1-v),u(1-v),uv{\big )}^{T}\ . $

Verallgemeinerte baryzentrische Koordinaten

Baryzentrische Koordinaten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (a_1, \dotsc, a_n) , die mit Bezug auf ein Polytop statt mit Bezug auf ein Simplex definiert sind, werden verallgemeinerte baryzentrische Koordinaten genannt. Hierbei wird weiterhin verlangt, dass die Gleichung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): ( a_1 + \dotsb + a_n ) \mathbf{p} = a_1 \, \mathbf{x}_1 + \dotsb + a_n \, \mathbf{x}_n

erfüllt wird, wobei $ \mathbf {x} _{1},\dotsc ,\mathbf {x} _{n} $ hier die Eckpunkte des gegebenen Polytops sind. Die Definition ist also formal unverändert, allerdings muss ein Simplex mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n Eckpunkten in einem Vektorraum mit einer Dimension von mindestens Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n-1 enthalten sein, während Polytope auch in Vektorräume von niedrigerer Dimension eingebettet sein können. Das einfachste Beispiel ist ein Viereck in der Ebene. Als Konsequenz sind sogar die normierten verallgemeinerten baryzentrischen Koordinaten für ein Polytop im Allgemeinen nicht eindeutig bestimmt, obwohl dies für normierte baryzentrische Koordinaten mit Bezug auf ein Simplex der Fall ist.

Verallgemeinerte baryzentrische Koordinaten werden insbesondere in der Computergrafik und bei der geometrischen Modellierung verwendet. Dort können dreidimensionale Objekte oft durch Polyeder approximiert werden, sodass die verallgemeinerten baryzentrischen Koordinaten eine geometrische Bedeutung haben und die weitere Bearbeitung dieser Objekte erleichtern.

Baryzentrische Interpolation

Auf baryzentrischen Koordinaten basiert ein Interpolationsverfahren, das die lineare Interpolation für Funktionen mehrerer Variablen verallgemeinert.

Im Falle einer Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): f von zwei Variablen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x und $ y $ sind für drei Punkte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A(x_A,y_A) , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): B(x_B,y_B) und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): C(x_C,y_C) die Funktionswerte gegeben. Dabei dürfen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): B und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): C nicht auf einer Geraden liegen. Sie müssen also ein Dreieck Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): ABC aufspannen. Ist nun ein beliebiger Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (x,y) gegeben, so definiert man

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): f(x,y) = a \, f(x_A,y_A) + b \, f(x_B,y_B) + c \, f(x_C,y_C) ,

wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (a,b,c) die normierten baryzentrischen Koordinaten von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (x,y) sind. Diese Interpolation funktioniert auch für Punkte außerhalb des Dreiecks.

Literatur

  • Oswin Aichholzer, Bert Jüttler: Einführung in die angewandte Geometrie. Springer-Verlag, Basel 2013, doi:10.1007/978-3-0346-0651-6, ISBN 978-3-0346-0651-6, S. 59.
  • Gerald Farin, Diane Hansford: Lineare Algebra: Ein geometrischer Zugang. Springer-Verlag, 2013, doi:10.1007/978-3-642-55841-2, ISBN 978-3-540-41854-2, S. 139.
  • John Fauvel, Raymond Flood, Robin Wilson: Möbius und sein Band: Der Aufstieg von Mathematik und Astronomie im Deutschland des 19. Jahrhunderts. Springer-Verlag, 2013, ISBN 978-3-0348-6203-5, S. 106.
  • Peter Knabner, Lutz Angermann: Numerik partieller Differentialgleichungen. Eine anwendungsorientierte Einführung. Springer 2000, ISBN 3-642-57181-6, S. 108–111 (books.google.de).
  • Abraham A. Ungar: Barycentric Calculus in Euclidean and Hyperbolic Geometry. World Scientific 2010, ISBN 978-981-4304-93-1.
  • John Vince: Mathematics for Computer Graphics. Springer 2010, ISBN 978-1-84996-032-8, S. 208–236.

Weblinks

Einzelnachweise

  1. Max Koecher, Aloys Krieg: Ebene Geometrie. Springer-Verlag, Berlin 2007, ISBN 978-3-540-49328-0, S. 76.
  2. August Ferdinand Möbius: Der baryzentrische Calcul, Verlag von Johann Ambrosius BartH, Leipzig, 1827.
  3. Josef Hoschek, Dieter Lasser: Grundlagen der geometriechen Datenverarbeitung. Teubner-Verlag,, 1989, ISBN 3-519-02962-6, S. 243.
  4. Gerald Farin: Curves and Surfeces for Computer Aided Geometric Design. Academic Press, 1990, ISBN 0-12-249051-7, S. 20.
  5. Christian Gerthsen: Physik. Springer-Verlag, 1963, S. 37.
  6. Felix Klein: Vorlesungen über höhere Geometrie, Springer-Verlag, 2013 ISBN 3642886744, 9783642886744, S. 15 .