| Physikalische Kennzahl
|
| Name |
Bodenstein-Zahl
|
| Formelzeichen
|
$ {\mathit {Bo}} $
|
| Dimension
|
dimensionslos
|
| Definition
|
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathit{Bo}= \frac{u \cdot L}{D_\mathrm{ax}}
|
| Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): u
|
Strömungsgeschwindigkeit
|
| Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): L
|
Länge des Reaktors
|
| Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): D_\mathrm{ax}
|
axialer Dispersionskoeffizient
|
|
| Benannt nach
|
Max Bodenstein
|
| Anwendungsbereich
|
Chemische Reaktionstechnik
|
Die Bodenstein-Zahl (nach Max Bodenstein), kurz Bo, ist eine dimensionslose Kennzahl aus der Reaktionstechnik, die das Verhältnis der konvektiv zugeführten zu den durch Diffusion zugeführten Molen beschreibt. Damit charakterisiert die Bodenstein-Zahl die Rückvermischung innerhalb eines Systems (je größer die Bodenstein-Zahl, desto geringer die Rückvermischung) und ermöglicht Aussagen darüber, ob und wie stark sich Volumenelemente oder Stoffe innerhalb eines Reaktors durch die herrschenden Strömungen vermischen.
Definiert ist die Bodenstein-Zahl als das Verhältnis des Konvektionsstroms zum Dispersionsstrom. Sie ist ein Bestandteil des Dispersionsmodelles und wird daher auch als dimensionsloser Dispersionskoeffizient bezeichnet.[1]
Mathematisch erhält man für die Bodenstein-Zahl zwei idealisierte Grenzfälle, die sich praktisch jedoch nicht vollständig erreichen lassen:
- wäre die Bodenstein-Zahl gleich Null, so hätte man den Zustand einer totalen Rückvermischung erreicht, der idealerweise in einem kontinuierlich betriebenen Rührkessel-Reaktor erwünscht ist.
- wäre die Bodenstein-Zahl unendlich groß, so gäbe es keine Rückvermischung, sondern nur eine kontinuierliche Durchströmung, die in einem idealen Strömungsrohr herrscht.
Durch Regulierung der Strömungsgeschwindigkeit innerhalb eines Reaktors kann die Bodenstein-Zahl auf einen zuvor berechneten, gewünschten Wert eingestellt werden. Somit kann die innerhalb des jeweiligen Reaktors gewünschte Rückvermischung der Stoffkomponenten erreicht werden.
Bestimmung
Die Bodenstein-Zahl berechnet sich durch
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathit{Bo}=\frac{u \cdot L}{D_\mathrm{ax}}
mit
- der Strömungsgeschwindigkeit $ u $
- der Länge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): L
des Reaktors
- dem axialen Dispersionskoeffizienten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): D_\mathrm{ax}
in m²/s.
Experimentell kann die Bodenstein-Zahl aus der Verweilzeitverteilung gewonnen werden. Bei Annahme eines offenen Systems gilt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \sigma_\theta^2=\frac{\sigma^2}{\tau^2}=\frac{2}{\mathit{Bo}}+\frac{8}{\mathit{Bo}^2}
mit
- der dimensionslosen Varianz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \sigma^{2}_{\theta}
- der Varianz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \sigma^2
um die mittlere Verweilzeit
- der hydrodynamischen Verweilzeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tau
.
Einzelnachweise
- ↑ Matthias Bohnet (Hrsg.): Mechanische Verfahrenstechnik. Wiley-VCH, Weinheim 2004, ISBN 3-527-31099-1, S. 213–229.