Faber-Jackson-Beziehung

Faber-Jackson-Beziehung

Die Faber-Jackson-Beziehung (nach Sandra M. Faber und Robert Earl Jackson, die die Beziehung 1976 entdeckten) ist ein beobachteter Zusammenhang zwischen Leuchtkraft L und der Geschwindigkeitsdispersion $ \sigma $ in elliptischen Galaxien. Danach hängt die Leuchtkraft proportional von einer Potenz der Geschwindigkeitsdispersion ab:

$ L\propto \sigma ^{\gamma } $

Der Exponent Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \gamma liegt sehr nahe bei 4.

Die Faber-Jackson-Beziehung wird vielfach verwendet, um von der Leuchtkraft auf die Geschwindigkeitsdispersion einer elliptischen Galaxie zu schließen.

Herleitung

Man kann die Form der Faber-Jackson-Beziehung unter gewissen idealisierenden Annahmen leicht abschätzen. Daraus ergibt sich der Exponent der Beziehung zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \gamma = 4 . Der tatsächlich beobachtete Exponent hängt vom Verlauf der Dichte sowie des Masse-Leuchtkraft-Verhältnisses ab und weicht von dem theoretischen Wert mehr oder weniger stark ab.

Die potentielle Energie einer selbstgravitierenden Masseverteilung von Radius R und Masse M ist

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): U=-\frac{3}{5}\frac{GM^2}{R}

Die gesamte kinetische Energie ist

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): T = \frac{1}{2}M \sigma^2

Mit dem Virialtheorem (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 2 T + U = 0 ) folgt

$ \sigma ^{2}={\frac {3}{5}}{\frac {GM}{R}} $.

Wenn Masse und Leuchtkraft zueinander proportional sind, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): M \propto L , kann M ersetzt werden und hat noch

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): L \propto \frac{\sigma^2R}{G} ,

eine Beziehung zwischen R und der Geschwindigkeitsdispersion:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): R \propto\frac{LG}{\sigma^2} .

Mit einer konstanten Oberflächenhelligkeit

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): B=\frac{L}{4\pi R^2}

folgt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): L=4 \pi R^2 B ,
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): L \propto 4\pi\left(\frac{LG}{\sigma^2}\right)^2B ,

und schlussendlich der gesuchte Zusammenhang zwischen Leuchtkraft und Geschwindigkeitsdispersion:

$ L\propto {\frac {\sigma ^{4}}{4\pi G^{2}B}}\propto \sigma ^{4} $,

Quellen

Siehe auch

  • Tully-Fisher-Relation