Die Indexnotation ist eine Form, Tensoren schriftlich darzustellen, die vor allem in der Physik und gelegentlich auch im mathematischen Teilgebiet der Differentialgeometrie Anwendung findet.
In ihrer verbreiteteren Form gibt die Notation Tensorkomponenten in bestimmten Koordinaten an. Mit der abstrakten Indexnotation werden dagegen Tensoren koordinatenunabhängig bezeichnet, wobei die Notation den Typ des Tensors angibt und Kontraktionen und kovariante Differentiationen koordinatenfrei darstellen kann. Die abstrakte Indexnotation wurde von Roger Penrose eingeführt.[1]
Am üblichsten ist diese Notation im Kontext der allgemeinen Relativitätstheorie, deren Formulierung in Form von Tensoren erfolgt. Auch einige moderne Texte über spezielle Relativitätstheorie verwenden diese Notation, und im Kontext von Eichtheorien ist sie auch in der Quantenfeldtheorie anzutreffen. Diese Notation eignet sich besonders für Rechnungen in lokalen Koordinaten, weshalb sie in der Physik deutlich verbreiteter ist als in der Mathematik.
Es gibt zwei Grundformen dieser Notation. In der einen stellen die Tensoren mit Indizes Elemente der Tensoren in lokalen Koordinaten dar. Bei dieser Variante wird die Einsteinsche Summenkonvention verwendet, um Kontraktionen oder Spurbildungen auszuführen. Die zweite Möglichkeit ist die abstrakte Tensornotation. Bei dieser zeigen die Indizes nicht mehr die Komponenten in Koordinaten an, sondern sind nur noch Symbole, die die Stufe des Tensors angeben.
In der Differentialgeometrie wird die Geometrie gekrümmter Räume untersucht, die durch sogenannte differenzierbare Mannigfaltigkeiten beschrieben werden. Diese Mannigfaltigkeiten erlauben an jedem Punkt
Die Elemente eines Tensorproduktes aus
Die Koordinatendarstellungen von Tensorfeldern müssen ein bestimmtes Transformationsverhalten unter Kartenwechselabbildungen, also lokalen Diffeomorphismen, erfüllen.
Die Indexnotation schreibt die Argumente, in denen der Tensor linear ist, nicht mittels einer Argumentklammer, sondern mittels Indizes. Diese Indizes werden hoch- oder tiefgestellt, je nachdem ob das Argument aus dem Tangentialraum oder dem Kotangentialraum ist. Ein
Die Indexnotation beruht darauf, dass Tensoren multilineare Abbildungen sind und daher in den Argumenten, in denen sie linear sind, ein Distributivgesetz erfüllen und mit der Multiplikation mit Skalaren kommutieren. Das bedeutet, dass sich z. B.
Wenn man die obige Formel als Koordinatenschreibweise versteht, ist sie mit der Summenkonvention einfach zu verstehen. Diese Notation lässt sich jedoch auch koordinatenfrei auffassen, wobei die Position der Indizes nur beschreibt, welche Art Tensor vorliegt, wobei also obenstehende Indizes Kopien des Tangentialraums und untenstehende Indizes Kopien des Kotangentialraums bezeichnen. Das Zeichen für das Tensorprodukt wird in dieser Notation ausgelassen, das heißt hintereinandergeschriebene Tensoren werden als Tensorprodukt aufgefasst. Bei einem einmal oben- und einmal untenstehenden Index wird eine Kontraktion analog zur kanonischen Paarung verstanden, was prinzipiell nicht basisabhängig ist.
Ein Tensor ist, im Sprachgebrauch der Physik, eine Äquivalenzklasse von Tripeln
Eine Klasse äquivalenter Darstellungstripel
wobei
mit
Beispiel einer kontravarianten Größe ist der Spaltenvektor der Koordinaten eines Ortsvektors
Unter einem Basis-/Koordinatenwechsel
Das invariante geometrische Objekt ist der Vektor
In der relativistischen Raum-Zeit werden die Koordinaten als Spaltenvektor
angegeben.
Beispiel einer kovarianten Größe ist der Zeilenvektor der Koordinaten einer 1-Form, d. h. eines linearen Funktionals,
Das invariante geometrische Objekt ist der Kovektor
In der relativistischen Raum-Zeit werden die Koordinaten als
angegeben.
Analog zur Multiplikation eines Zeilen- mit einem Spaltenvektor in
Die letzte Schreibweise verwendet die Einsteinsche Summationskonvention, die besagt, dass über gleich benannte Indizes summiert wird, wenn der eine unten und der andere oben steht. Man spricht auch, etwas ungenau, vom Skalarprodukt eines ko- und eines kontravarianten Vektors.
Man rechnet leicht nach, dass es sich dabei auch tatsächlich um einen Skalar, d. h. einen transformationsinvarianten Tensor 0. Stufe handelt:
Das zweite Newtonsche Gesetz in Indexnotation:
Es findet sehr oft eine Umschreibung kontravarianter Koordinaten in kovariante statt, d. h. eine Umwandlung eines Vektors in eine 1-Form und umgekehrt. Man bezeichnet dies als Hochstellen oder Herunterstellen von Indizes.
Dies wird durch einen metrischen Tensor
Im Allgemeinen verlangt man, dass der metrische Tensor symmetrisch –
Die Inverse zum metrischen Tensor wird auch als seine kontravariante Form bezeichnet.
Die adjungierte 1-Form des Ortsvektors
Die Anwendung der adjungierten 1-Form
ist eine quadratische Abbildung, die den Ortsvektor auf eine reelle Zahl abbildet.
Der Vektor
In der speziellen Relativitätstheorie bzw. im Minkowski-Raum ist die Koordinatenmatrix des metrischen Tensors diagonal mit Einträgen
Hieraus folgt:
Durch die kontravariante und kovariante Schreibweise werden Darstellungen in der Form
Darüber hinaus ermöglicht ihre Verwendung in der speziellen Relativitätstheorie den direkten Übergang auf den allgemeinen Fall.
Die abstrakte Index-Notation benutzt die Formalismen von Einsteins Summenkonvention um die Schwierigkeiten der Beschreibung von Kontraktionen und kovarianten Differentiationen der modernen abstrakten Tensor-Notation zu umgehen und die explizite Kovarianz des Ausdruckes zu erhalten.
Es sei
Die Platzhalter "
Die Argumente von
Dabei kommt es nicht auf die Reihenfolge der Argumente an, was den Rechenregeln bei der Einsteinschen Summenkonvention entspricht. Ob der abstrakte Index einen Platzhalter für ein Argument oder ein Argument selbst bezeichnet, hängt von der Interpretation der Ausdrücke ab, in denen gewisse natürliche Vektorraumisomorphismen manifest sind. Beispielsweise steht
Die Identifikation
Ein weiteres Beispiel ist die Spur eines Tensors
Ein allgemeiner homogener Tensor ist ein Element eines beliebig oft wiederholten Tensorprodukts der Vektorräume
Nun erhält jeder Faktor in diesem Tensorprodukt eine Bezeichnung mithilfe eines lateinischen Buchstabens in hochgestellter Position, wenn es sich um einen kontravarianten Faktor (also
beziehungsweise
darstellbar.
Es ist wichtig, sich bewusst zu machen, dass diese Ausdrücke dasselbe Objekt darstellen. Somit werden Tensoren dieses Typs durch folgende gleichwertige Ausdrücke dargestellt:
Immer wenn im Tensorprodukt von Vektorräumen
die Spur der ersten beiden Vektorräume. Und
die Spur des ersten und des fünften Vektorraums. Diese Spuroperationen lassen sich in der Abstrakten Index-Notation wie folgt darstellen:
Zu jedem Tensorprodukt existieren sogenannte Zopfabbildungen. Zum Beispiel vertauscht die Zopfabbildung
die beiden Tensorfaktoren (also
Zopfabbildungen sind wichtig in der Differentialgeometrie. Beispielsweise lässt sich die Bianchi-Identität dadurch ausdrücken. Hier sei
In der Abstrakten Index-Notation ist die Anordnung der Indizes fix (normalerweise lexikographisch geordnet). Somit kann eine Zopfabbildung durch Vertauschen der Indizes repräsentiert werden. Beispielsweise ist der Riemannsche Krümmungstensor in der Abstrakten Index-Notation:
Die Bianchi-Identität wird so zu