Kontinuitätsgesetz

Kontinuitätsgesetz

Das Kontinuitätsgesetz besagt (in integraler Form), dass der Massenstrom eines Fluids (Flüssigkeit oder Gas) in einem Rohr unabhängig davon ist, wo er gemessen wird. Die differenzielle Form ist die Kontinuitätsgleichung. Sie gilt sowohl in reibungsfreien als auch reibungsbehafteten Fällen für stationäre (zeitunabhängige) und für instationäre Strömungen inkompressibler Fluide, nicht jedoch für instationäre Strömungen kompressibler Fluide.

Für inkompressible (nicht zusammendrückbare) Fluide gilt Kontinuität auch für den Volumenstrom.

Inkompressible Fluide

Datei:FlowRate gv52.png
Querschnittsveränderung eines Rohres

Nach dem Kontinuitätsgesetz für inkompressible Fluide tritt aus einem Rohrabschnitt dasselbe Volumen aus, das zeitgleich am anderen Ende eintritt. In nebenstehender Abbildung sind die beiden Volumina grau markiert, wobei zur Vereinfachung Pfropfenströmung angenommen wurde. Das eintretende Volumen ist $ V_{1}=A_{1}\Delta x_{1} $, das austretende $ V_{2}=A_{2}\Delta x_{2} $. Wegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V_1 = V_2 ist im engeren Teil des Rohres die Verschiebung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta x_2 um denselben Faktor größer als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta x_1 , um den der Querschnitt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A_1 größer ist als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A_2 . Gleiches gilt für die (über den Querschnitt gemittelten) Strömungsgeschwindigkeiten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v = \Delta x/\Delta t .

Diesen Zusammenhang fand Giovanni Battista Venturi, siehe Bernoulli-Gleichung.

Kompressible Fluide

Für kompressible (nicht raumbeständige) Fluide bzw. Fluide, die ihre Dichte ändern können, gilt für den Massenstrom:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Q=v \cdot A \cdot \rho=\text{konstant}
$ \rho $ = Dichte des Fluids
bzw.
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v_1 \cdot A_1 \cdot \rho_1 = v_2 \cdot A_2 \cdot \rho_2
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho_{1,2} = Dichte im Rohr 1 bzw. 2

Somit gilt: Die Masse, die an einer Seite hineingeht, muss an der anderen Seite wieder herauskommen.

Die Dichte des Fluids kann sich zum Beispiel ändern, wenn sich die Temperatur des Fluids zwischen Anfang und Ende des Rohres ändert. Wenn sich die Dichte vermindert, muss in der gleichen Zeit ein größeres Volumen herauskommen.

Trivia

Im Gegensatz zum ersten Anschein verhalten sich auch Autos im Verkehrsstau bei einer Fahrbahnverengung entsprechend dem Kontinuitätsgesetz. Dabei muss der Abstand der Autos als Dichte mit betrachtet werden. Bei großem Querschnitt ist die Dichte gering, die Geschwindigkeit hoch und der Verkehr fließt frei. Im Stau vor der Einengung sind die Dichte hoch und die Geschwindigkeit gering. In der Einengung ist der Querschnitt klein, die Geschwindigkeit und die Dichte mittelgroß, und der Fahrzeugdurchsatz in allen Fällen gleich, sofern kein Auto die Straße verlässt oder hinzukommt.[1][2]

Weblinks

Einzelnachweise

  1. Matt Anderson: Continuity Equation Moving fluids and traffic. In: youtube.com. 24. Juni 2014, abgerufen am 26. Januar 2018 (Lua-Fehler in Modul:Multilingual, Zeile 149: attempt to index field 'data' (a nil value)).
  2. Fluid Dynamics Explains Some Traffic Jams. In: insidescience.org. American Institute of Physics, 8. November 2013, abgerufen am 26. Januar 2018 (Lua-Fehler in Modul:Multilingual, Zeile 149: attempt to index field 'data' (a nil value)).