Lichtkegel

Lichtkegel

In der relativistischen Physik bezeichnet der Lichtkegel eines Ereignisses Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E die Menge aller Ereignisse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E' , die sich mit Lichtgeschwindigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): c auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E auswirken oder von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E mit Lichtgeschwindigkeit beeinflusst werden können.

Datei:World line-de.svg
Lichtkegel in einer Raumzeit mit zwei Raumdimensionen, Vorwärts-Lichtkegel in positiver Zeitrichtung.
Der Beobachter eines Ereignisses Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E befindet sich im Schnittpunkt von Vergangenheits- und Zukunfts-Lichtkegel (Gegenwart).

Der Lichtkegel ist ein Doppelkegel im vierdimensionalen Minkowski-Raum. Er besteht aus

  • dem Rückwärts-Lichtkegel, der genau die Ereignisse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E' enthält, die vor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E stattgefunden haben (Vergangenheit, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t' < t ) und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E mit Lichtgeschwindigkeit bewirkt haben können (siehe Lokalität und Kausalität), und
  • dem Vorwärts-Lichtkegel, das sind die Ereignisse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E', die später als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E stattfinden (Zukunft, $ t'>t $) und von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E mit Lichtgeschwindigkeit verursacht worden sein können.

Definition

Seien

  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (t, x, y, z) die Orts- und Zeitkoordinaten von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E ,
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (t', x', y', z') die Koordinaten von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E' ,
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (t'-t, x'-x, y'-y, z'-z) die Komponenten des Differenzvektors Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E' - E ,
  • $ \mathrm {d} s^{2}:=c^{2}\cdot \mathrm {d} t^{2}-\mathrm {d} x^{2}-\mathrm {d} y^{2}-\mathrm {d} z^{2} $ das Quadrat des differentiellen Abstands in der flachen Raumzeit, der für alle Beobachter identisch ist. Die hier verwendete Signatur ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (+,-,-,-) . Für eine Signatur Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (-,+,+,+) gelten für $ \mathrm {d} s^{2} $ analoge Definitionen mit umgekehrtem Vorzeichen.

Lichtartiger Differenzvektor

Wenn der Differenzvektor lichtartig ist:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{align} && \mathrm ds^2 &= 0\\ \Leftrightarrow && c^2 \, (t'-t)^2 - (x'-x)^2 - (y'-y)^2 - (z'-z)^2 &= 0\\ \Leftrightarrow && \left( \frac{x'-x}{t'-t} \right)^2 + \left( \frac{y'-y}{t'-t} \right)^2 + \left( \frac{z'-z}{t'-t} \right)^2 &= c^2\\ \Leftrightarrow && v_x^2 + v_y^2 + v_z^2 &= c^2, \end{align}

dann liegt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E' in der speziellen Relativitätstheorie auf dem Lichtkegel von $ E. $ Genau die Ereignisse auf dem Rückwärts- bzw. Vergangenheits-Lichtkegel sind aktuell für einen Beobachter sichtbar, der sich in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E aufhält (ohne Berücksichtigung der Expansion des Universums).

Zeitartiger Differenzvektor

Ist der Differenzvektor zeitartig:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{align} && \mathrm ds^2 &> 0\\ \Leftrightarrow && c^2 \, (t'-t)^2 - (x'-x)^2 - (y'-y)^2 - (z'-z)^2 &> 0\\ \Leftrightarrow && v_x^2 + v_y^2 + v_z^2 &< c^2, \end{align}

so liegt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E' im Inneren des Rückwärts- oder Vorwärts-Lichtkegels von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E , je nachdem, ob es vor oder nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E stattgefunden hat. Dann kann es sich bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E' um die Ursache oder um die Auswirkung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E handeln, die sich langsamer als Licht auswirkt. Ereignisse innerhalb des Rückwärts- bzw. Vergangenheits-Lichtkegels waren früher für einen Beobachter sichtbar, der sich an derselben Stelle im Raum aufhielt wie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E (ohne Berücksichtigung der Expansion des Universums).

Raumartiger Differenzvektor

Ist der Differenzvektor raumartig:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{align} && \mathrm ds^2 &< 0\\ \Leftrightarrow && c^2 \, (t'-t)^2 - (x'-x)^2 - (y'-y)^2 - (z'-z)^2 &< 0\\ \Leftrightarrow && v_x^2 + v_y^2 + v_z^2 &> c^2, \end{align}

so liegt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E' außerhalb des Rückwärts- oder Vorwärts-Lichtkegels. Bei den Ereignissen kann es sich nicht um Ursache und Wirkung handeln, denn dann müsste sich eine Ursache mit Überlichtgeschwindigkeit auswirken. Ereignisse außerhalb des Rückwärts- bzw. Vergangenheits-Lichtkegels von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E und vor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E sind für einen Beobachter, der sich in $ E $ aufhält, (noch) nicht sichtbar (d. h. sie liegen hinter dem Ereignishorizont, ohne Berücksichtigung der Expansion des Universums).

Folgen für die Lösung relativistischer Differentialgleichungen

Die Lösung der inhomogenen Klein-Gordon-Gleichung, gültig für Bosonen, hängt für das Ereignis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E nur ab von den früheren Anfangsbedingungen sowie der Inhomogenität auf dem Rückwärts-Lichtkegel von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E und in seinem Inneren.

Die Lösung der homogenen Klein-Gordon-Gleichung (verschwindende Masse, entspricht der Wellengleichung) hängt nur ab von den Anfangsbedingungen und der Inhomogenität auf dem Rückwärts-Lichtkegel von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E , aber nicht mehr von der Inhomogenität in seinem Inneren. Anfangsbedingungen und Inhomogenität wirken sich in diesem Fall nur mit Lichtgeschwindigkeit aus.

Die Folgen für die Lösung anderer grundlegender relativistischer Gleichungen (z. B. der Dirac-Gleichung, gültig für Fermionen) sind entsprechend.

Siehe auch

Literatur

  • Richard Courant, David Hilbert: Methoden der mathematischen Physik. Band 2. Zweite Auflage. Springer Verlag, Berlin 1968 (Heidelberger Taschenbücher 31, ISSN 0073-1684).

Weblinks

Wiktionary: Lichtkegel – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen