Molière-Radius

Molière-Radius

Der Molière-Radius Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): R_\text{m} ist eine Materialkonstante und beschreibt die transversale, d. h. seitliche Ausdehnung eines elektromagnetischen Schauers, die hauptsächlich durch Vielfachstreuung hervorgerufen wird.

Der Radius ist definiert als:[1]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): R_\text{m} = \frac{21\,\text{MeV}}{E_\text{C}} X_0

mit

  • der kritischen Energie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E_\text{C} des Materials
  • dessen Strahlungslänge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): X_0 .

Ist die Strahlungslänge als Massenbelegung angegeben, z. B. in Einheiten von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): [\text{g}/\text{cm}^2] , so muss sie durch die Dichte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \varrho des Materials dividiert werden.

Die kritische Energie ist definiert als die Teilchenenergie, bei der der Energieverlust durch Bremsstrahlung gleich dem durch Ionisation ist:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \left( \frac{\text{d} E}{\text{d} x}\right)_\text{Brems.} = \left( \frac{\text{d} E}{\text{d} x}\right)_\text{Ionis.} \qquad \text{für } E = E_\text{C}

Eine Näherung[2] für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E_\text{C} stellt folgende Gleichung dar:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E_\text{C} \approx \frac {800\,\text{MeV}}{Z + 1{,}2}

mit der Kernladungszahl $ Z $.

In guter Näherung ist die (laterale, d. h. ebenfalls seitliche) Breite eines Schauers unabhängig von seiner Tiefe und damit seiner Energie. 90 % (95 %) der Energie wird innerhalb eines recht engen Schauerkerns deponiert, der mittels eines idealisierten Zylinders um die Schauerachse beschrieben werden kann. Dessen Radius wird abgeschätzt zu:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): R(90\,\%) = R_\text{m} bzw.
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): R(95\,\%) = 2 \, R_\text{m} .

Der Molière-Radius wird vornehmlich bei der Entwicklung und Anwendung von Kalorimetern in der Teilchenphysik eingesetzt. Hierbei deutet ein kleiner Molière-Radius auf eine gute Schauerpositions-Auflösung hin, ebenso überlappen sich nahe Schauer nur geringfügig.

Literatur

  • Dan Green: The Physics of Particle Detectors. Cambridge University Press, 2000, ISBN 0-521-66226-5, S. 251 (eingeschränkte Vorschau in der Google-Buchsuche).

Einzelnachweise

  1. Claus Grupen: Teilchendetektoren. Wissenschaftsverlag, 1993, S. 298.
  2. W.R. Leo: Techniques for Nuclear and Particle Physics Experiments. Springer-Verlag, 1994, S. 41 (eingeschränkte Vorschau in der Google-Buchsuche).