Monte-Carlo-Algorithmen sind randomisierte Algorithmen, die mit einer nichttrivial nach oben beschränkten Wahrscheinlichkeit ein falsches Ergebnis liefern. Dafür sind sie im Vergleich zu deterministischen Algorithmen häufig effizienter. Durch Wiederholen des Algorithmus mit unabhängigen Zufallszahlen kann jedoch die Fehlerwahrscheinlichkeit gesenkt werden (Probability Amplification, weitere Einzelheiten im Artikel Randomisierter Algorithmus). Im Gegensatz zu Monte-Carlo-Algorithmen dürfen Las-Vegas-Algorithmen nur korrekte Lösungen berechnen.
Der Name Monte-Carlo hängt laut Nicholas Metropolis wie folgt mit der Methode zusammen: Stan Ulam hatte einen Onkel, der sich zum Spielen immer Geld von Verwandten geliehen hatte, denn „er musste nach Monte Carlo gehen“.[1]
Monte-Carlo-Algorithmen dienen als Basis für Monte-Carlo-Simulationen.
Monte-Carlo-Algorithmen gibt es für
Diese Konzepte werden im folgenden Abschnitt verdeutlicht, in dem Komplexitätsklassen für Probleme mit Monte-Carlo-Algorithmen definiert werden.
Die angegebenen Schranken für die Wahrscheinlichkeiten müssen jeweils für alle Eingaben gelten; die Wahrscheinlichkeiten beziehen sich jeweils nur auf die vom Algorithmus verwendeten Zufallsbits (und nicht auf die Eingabe, die Eingabe wird also nicht als zufällig aufgefasst). Mit Hilfe von Probability Amplification kann man zeigen, dass die Konstante 2/3 aus der Definition von BPP durch jede andere Konstante aus dem Intervall (1/2,1) ersetzt werden kann, ohne die Menge BPP zu ändern; ebenso kann in den Definitionen von RP und co-RP die Konstante 1/2 durch jede Konstante aus dem Intervall (0,1) ersetzt werden.
Obwohl BPP und RP Mengen von Problemen sind, werden im allgemeinen Sprachgebrauch häufig Begriffe wie BPP-Algorithmen oder RP-Algorithmen benutzt, um Algorithmen mit den oben definierten Eigenschaften zu bezeichnen.
Zur Verdeutlichung der Definition von RP: Wenn ein RP-Algorithmus die Ausgabe Ja liefert, wissen wir mit Sicherheit, dass die Ausgabe Ja korrekt ist (da die Definition sicherstellt, dass bei korrekter Ausgabe Nein dies auf jeden Fall auch ausgegeben wird). Wenn dagegen ein RP-Algorithmus die Ausgabe Nein liefert, wissen wir nichts über die korrekte Ausgabe (da nach der Definition die Ausgabe Nein möglich ist, wenn Ja oder Nein korrekt wäre).
Alle folgenden Algorithmen gehören zu den Markov-Chain-Monte-Carlo-Verfahren, d. h. die Erzeugung der Zustände geschieht auf der Basis der Konstruktion einer Markow-Kette.
Der von Nicholas Metropolis publizierte Metropolisalgorithmus zur Untersuchung statistisch-mechanischer Systeme mittels Computersimulation leitet sich von der Monte-Carlo-Integration ab. Ein Spezialfall des Algorithmus ist das Gibbs-Sampling.
Sequenzielle Monte-Carlo-Methoden eignen sich zur Bayesschen Zustandsschätzung von dynamischen Systemen. Ziel ist es, den Systemzustand als Funktion der Zeit auf Basis einer Reihe von Beobachtungen des Systems und A-priori-Kenntnissen der Systemdynamik zu schätzen. Dazu wird die komplizierte Wahrscheinlichkeitsdichte des Zustandes diskret durch eine Menge von Partikeln approximiert. Sequentielle Monte-Carlo-Methoden werden auch Partikelfilter genannt.
Quanten-Monte-Carlo-Methoden werden zur Berechnung physikalischer Observablen in quantenfeldtheoretischen Modellen benutzt. Beispiele sind Modelle aus der theoretischen Festkörperphysik wie das Hubbard-Modell oder das tJ-Modell.
Die kinetische Monte-Carlo-Methode erlaubt es den zeitlichen Fortschritt eines Systems zu simulieren.
Cluster-Algorithmen sind nicht-lokale Verfahren. Hierzu zählen der Swendsen-Wang-Algorithmus und der Wolff-Algorithmus.
Der Hybrid-Monte-Carlo-Algorithmus ist ein Monte-Carlo-Algorithmus zur Erzeugung von Systemen im kanonischen Zustand. Das Verfahren ist eine Kombination aus Molekulardynamik und Monte-Carlo Methoden her: neue Konfigurationen werden mithilfe von Molekulardynamik vorgeschlagen, jedoch müssen die vorgeschlagenen Konfigurationen z.Vorlage:NnbspB. durch das Akzeptanzkriterium akzeptiert werden.