Preisach-Modell

Preisach-Modell

Das Preisach-Modell ist ein mathematisches Modell zur Beschreibung von Hysteresekurven. Es wurde erstmals 1935 vom ungarischen Physiker Ferenc Preisach unter dem Titel Über die magnetische Nachwirkung in der Zeitschrift für Physik[1] veröffentlicht. Anfangs wurde es entwickelt zur Beschreibung der Hystereseeigenschaften von ferromagnetischen Materialien, inzwischen findet es jedoch auch in anderen physikalischen Bereichen Anwendung.

Allgemeines

Einfach gesprochen besteht das Preisach-Modell aus einer Ansammlung vieler einfachster Rechteckhysteresekurven mit dem Hystereseoperator Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): R_{\alpha,\beta} .

Der Ausgang dieser Hysteresefunktionen ergibt sich wie folgt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): y(x)=\begin{cases} 1&\mbox{ wenn }x\geq\beta\\ 0&\mbox{ wenn }x\leq\alpha \\ k&\mbox{ wenn }\alpha<x<\beta \end{cases}

Dabei ist $ k $ die sogenannte Memory-Funktion, welche den vorherigen Wert der Ausgangsfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): y(t) enthält.

Integriert man nun über sehr viele solcher Rechteckhysteresekurven und gewichtet diese mit einem Verteilungsfaktor, so erhält man das Preisach-Modell in kontinuierlicher Form:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): y(t) = \Gamma \cdot x(t) = \iint_{\beta \geq \alpha} \mu(\alpha,\beta) \R_{\alpha, \beta} x(t) \mbox{d}\alpha \mbox{d}\beta

wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x(t) die Eingangsvariable und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): y(t) die Ausgangsvariable darstellen. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mu(\alpha,\beta) ist die Gewichtungsfunktion (auch Preisachfunktion bzw. Verteilungsfunktion genannt) und $ R_{\alpha ,\beta } $ der Hystereseoperator.

Literatur

  • I. Mayergoyz: Mathematical Models of Hysteresis and their Applications. 2. Auflage. Elsevier, 2003, ISBN 978-0-12-480873-7.

Weblinks

  • Preisach model. (Memento vom 22. September 2013 im Internet Archive) In: Hysteresis Tutorial. University College, Cork (englisch)

Einzelnachweise