Änderungsrate

Änderungsrate

Die Änderungsrate einer zeitabhängigen Größe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): G beschreibt das Ausmaß der Veränderung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): G über einen bestimmten Zeitraum im Verhältnis zur Dauer dieses Zeitraums. Anschaulich gesprochen, ist sie ein Maß dafür, wie schnell sich die Größe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): G ändert. Durch den Bezug auf die Zeitdauer enthält die Maßeinheit im Nenner eine Zeiteinheit; im Zähler steht eine Einheit von $ G $. Wird die Änderung auch auf die Größe selbst bezogen, spricht man von einer relativen Änderungs- oder Wachstumsrate.

Man unterscheidet zudem die mittlere Änderungsrate zwischen zwei Messungen und die momentane (auch lokale) Änderungsrate als abstrakte Größe einer Modellvorstellung.

Berechnung und Verwendung

Mittlere Änderungsrate

Die mittlere Änderungsrate ist die durchschnittliche Änderung einer zeitabhängigen Messgröße Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): G zwischen zwei Zeitpunkten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t_1 und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t_2 , also im Zeitraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta t=t_2-t_1 . Berechnet wird sie als Quotient aus der Differenz der beiden Werte zu diesen Zeitpunkten $ \Delta G=G(t_{2})-G(t_{1}) $ und der Dauer Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta t des Zeitraums: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tfrac{\Delta G}{\Delta t}

Im Zeit-Größen-Diagramm (Funktionsgraph, Schaubild) von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): G(t) ist die mittlere Änderungsrate zwischen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t_1 und $ t_{2} $ die Steigung der Sekante durch die Punkte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (t_1|G(t_1)) und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (t_2|G(t_2)) auf dem Diagramm.

Momentane Änderungsrate

Die momentane Änderungsrate ist die auf einen „Moment“ (sehr kurzen Zeitraum) bezogene Veränderung einer Messgröße Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): G . Sie kann mathematisch als Ergebnis des Grenzprozesses

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{\mathrm{d}G}{\mathrm{d}t} = \lim_{\Delta t \to 0}\frac{\Delta G}{\Delta t} = \lim_{\Delta t \to 0}\frac{G(t+\Delta t)-G(t)}{\Delta t}

als Ableitung $ {\dot {G}}(t) $ ihrer Zeit-Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): G -Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): G(t) dargestellt werden.

Für zeitlineare Änderungen ist die momentane Änderungsrate konstant gleich der mittleren Änderungsrate.

Änderungsraten in weiterem Sinn

Werden die Begriffe im übertragenen Sinn für Größen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): G(q) verwendet, die von einem anderen Parameter $ q $ als der Zeit abhängen, so ist:[1]

  • die mittlere Änderungsrate gleichbedeutend mit dem Differenzenquotienten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tfrac {\Delta G}{\Delta q}
  • die momentane Änderungsrate gleichbedeutend mit dem Differentialquotienten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tfrac {\mathrm{d}G}{\mathrm{d}q}

Ist der Parameter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): q eine vektorielle Größe, so wird statt des Begriffs „Rate“ auch der Begriff „Gradient“ verwendet, etwa Temperaturgradient oder Luftdruckgradient.

Beispiele

  • Bei einer geradlinigen Bewegung ist die Geschwindigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v(t) die momentane Änderungsrate der Zeit-Weg-Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x(t) . Der Artikel Geschwindigkeit macht im Abschnitt Definition der Geschwindigkeit den Unterschied von mittlerer und momentaner Änderungsrate deutlich.
  • Die Steigleistung eines Luftfahrzeuges gibt an, wie viel Höhe in einer bestimmten Zeit gewonnen werden kann.

Literatur

  • Harro Heuser: Lehrbuch der Analysis Teil 1. 5. Auflage. Teubner-Verlag, 1988, ISBN 3-519-42221-2
  • Christian Gerthsen, Hans O. Kneser, Helmut Vogel: Physik: ein Lehrbuch zum Gebrauch neben Vorlesungen. 16. Auflage. Springer-Verlag, 1992, ISBN 3-540-51196-2

Anmerkungen

  1. Helga Lohöfer: Tabelle der üblichen Änderungsbegriffe für Variable und Funktionen. Skript zur Übung Mathematische und statistische Methoden für Pharmazeuten, Universität Marburg. 2006.