Sedimentationsgeschwindigkeit: Unterschied zwischen den Versionen

Sedimentationsgeschwindigkeit: Unterschied zwischen den Versionen

imported>Acky69
K (zus. Info)
 
imported>Schrauber5
(→‎Berechnung: Da die Viskosität in der Formel nicht auftaucht ist die Abhängigkeit indirekt)
 
Zeile 1: Zeile 1:
Unter der '''Sedimentations'''-, '''Sink'''- oder '''Absinkgeschwindigkeit''' (auch '''Absinkrate''') versteht man die Vertikal[[geschwindigkeit]], mit der sich ein [[Partikel]] innerhalb eines [[fluid]]en [[Dispersionsmedium|Mediums]] absetzt ([[Sedimentation|sedimentiert]]). Wichtig ist diese vor allem für [[Korngrößenanalyse]]n und die damit verbundenen [[Trennen (Verfahrenstechnik) #Mechanische Trennverfahren|mechanischen Trennverfahren]] ([[Zentrifugation]], [[Dichtegradientenzentrifugation]], [[Dekantieren]], [[Sedimentation]]).
Unter der '''Sedimentations'''-, '''Sink'''- oder '''Absinkgeschwindigkeit''' (auch '''Absinkrate''') versteht man die Vertikal[[geschwindigkeit]], mit der sich ein [[Teilchen#Verwandte Begriffe|Partikel]] innerhalb eines [[fluid]]en [[Dispersionsmedium|Mediums]] absetzt ([[Sedimentation|sedimentiert]]). Wichtig ist diese vor allem für [[Korngrößenanalyse]]n und die damit verbundenen [[Trennen (Verfahrenstechnik) #Mechanische Trennverfahren|mechanischen Trennverfahren]] ([[Zentrifugation]], [[Dichtegradientenzentrifugation]], [[Dekantieren]], [[Sedimentation]]).


Vor allem in der Biologie wird die Sedimentationsgeschwindigkeit in [[Sedimentationskoeffizient|Svedberg]] angegeben.<ref name="Peter C. Heinrich, Matthias Müller, Lutz Graeve">{{Literatur |Autor=Peter C. Heinrich, Matthias Müller, Lutz Graeve |Titel=Löffler/Petrides Biochemie und Pathobiochemie |Verlag=Springer-Verlag |Datum=2014 |ISBN=978-3-642-17972-3 |Seiten=92 |Online={{Google Buch | BuchID=bswjBAAAQBAJ | Seite=92 }}}}</ref>
Vor allem in der Biologie wird die Sedimentationsgeschwindigkeit in [[Sedimentationskoeffizient|Svedberg]] angegeben.<ref name="Peter C. Heinrich, Matthias Müller, Lutz Graeve">{{Literatur |Autor=Peter C. Heinrich, Matthias Müller, Lutz Graeve |Titel=Löffler/Petrides Biochemie und Pathobiochemie |Verlag=Springer-Verlag |Datum=2014 |ISBN=978-3-642-17972-3 |Seiten=92 |Online={{Google Buch | BuchID=bswjBAAAQBAJ | Seite=92 }}}}</ref>
Zeile 15: Zeile 15:
* der [[Schwerebeschleunigung]]&nbsp;''g''
* der [[Schwerebeschleunigung]]&nbsp;''g''
* dem [[Durchmesser]] bzw. [[Äquivalentdurchmesser]]&nbsp;''d'' des Partikels
* dem [[Durchmesser]] bzw. [[Äquivalentdurchmesser]]&nbsp;''d'' des Partikels
* der [[Viskosität]] <math>\eta</math> des Fluids&nbsp;(s.&nbsp;u.)
* dem [[Strömungswiderstandskoeffizient]] (''Drag Coefficient'')&nbsp;''C''<sub>D</sub>.
* dem [[Strömungswiderstandskoeffizient]] (''Drag Coefficient'')&nbsp;''C''<sub>D</sub>.
** mit der dort enthaltenen [[Viskosität]] <math>\eta</math> des Fluids&nbsp;(s.&nbsp;u.)


Der Strömungswiderstandskoeffizient&nbsp;''C''<sub>D</sub> hängt wiederum ab von der [[Reynolds-Zahl]] <math>Re = \frac{\rho_f \cdot W_s \cdot d}{\eta}</math>:
Der Strömungswiderstandskoeffizient&nbsp;''C''<sub>D</sub> hängt wiederum ab von der [[Reynolds-Zahl]] <math>Re = \frac{\rho_f \cdot W_s \cdot d}{\eta}</math>:

Aktuelle Version vom 19. Mai 2020, 09:03 Uhr

Unter der Sedimentations-, Sink- oder Absinkgeschwindigkeit (auch Absinkrate) versteht man die Vertikalgeschwindigkeit, mit der sich ein Partikel innerhalb eines fluiden Mediums absetzt (sedimentiert). Wichtig ist diese vor allem für Korngrößenanalysen und die damit verbundenen mechanischen Trennverfahren (Zentrifugation, Dichtegradientenzentrifugation, Dekantieren, Sedimentation).

Vor allem in der Biologie wird die Sedimentationsgeschwindigkeit in Svedberg angegeben.[1]

Berechnung

Sedimentationsgeschwindigkeit Ws eines Sandkorns (Durchmesser d, Dichte 2650 kg/m³) in Wasser bei 20 °C;
die Kurve zeigt unterschiedliche Bereiche, da sich mit dem Korndurchmesser die Reynoldszahl und damit auch die Formel für den Drag Coefficient ändert

Die Sedimentationsgeschwindigkeit $ W_{\mathrm {s} } $ bleibt im Falle einer rein gravitativen Sedimentation (d. h. ohne Zentrifugation) konstant, sobald die mit der Geschwindigkeit zunehmende Reibungskraft die Gravitationskraft kompensiert, welche das Partikel beschleunigt.

Bei der Berechnung wird von kugelförmigen Teilchen ausgegangen, die in einer unendlich ausgedehnten Flüssigkeit sedimentieren, bei der weder Wände noch Nachbarteilchen die Geschwindigkeit beeinflussen:[2]

$ W_{\mathrm {s} }={\sqrt {{\frac {4}{3}}\cdot \left({\frac {\rho _{\mathrm {p} }}{\rho _{\mathrm {f} }}}-1\right)\cdot {\frac {g\cdot d}{C_{\mathrm {D} }}}}} $

Die Sedimentationsgeschwindigkeit hängt ab von:[3]

Der Strömungswiderstandskoeffizient CD hängt wiederum ab von der Reynolds-Zahl $ Re={\frac {\rho _{f}\cdot W_{s}\cdot d}{\eta }} $:

  • für geringe Sedimentationsgeschwindigkeiten bzw. Reynolds-Zahlen (Re < 0,5; laminare Strömung) gilt CD=24/Re. In diesem Fall ist die Sedimentationsgeschwindigkeit mit der Stokesschen Gleichung berechenbar, sie ändert sich mit dem Quadrat des Partikelradius bzw. des Äquivalentdurchmessers.[2]
  • zwischen diesen beiden Bereichen (0,5 < Re < 1000) gibt es keine einfache Formel für CD, aber verschiedene empirische Formeln, z. B. CD=18,5/Re0,6.[2]
  • für hohe Sedimentationsgeschwindigkeiten bzw. Reynolds-Zahlen (1000 < Re < 200.000, Newton-Bereich) gilt CD=0,44 (für Kugeln). In diesem Fall ändert sich die Sedimentationsgeschwindigkeit mit der Wurzel des Partikelradius bzw. des Äquivalentdurchmessers, siehe Formel oben. Es liegt eine turbulente Strömung vor.[2]

Als allgemeine Näherung für den Stokes-, Übergangs- und Newton-Bereich kann folgende Formel angewendet werden[2]:

$ C_{\mathrm {D} }={\frac {24}{Re}}+{\frac {4}{Re^{1/2}}}+0{,}4 $

Einzelnachweise

  1. Peter C. Heinrich, Matthias Müller, Lutz Graeve: Löffler/Petrides Biochemie und Pathobiochemie. Springer-Verlag, 2014, ISBN 978-3-642-17972-3, S. 92 (eingeschränkte Vorschau in der Google-Buchsuche).
  2. 2,0 2,1 2,2 2,3 2,4 Klaus Luckert: Handbuch der mechanischen Fest-Flüssig-Trennung. Vulkan-Verlag GmbH, 2004, ISBN 3-8027-2196-9, S. 106 (eingeschränkte Vorschau in der Google-Buchsuche).
  3. Ralf Takors: Kommentierte Formelsammlung Bioverfahrenstechnik. Springer-Verlag, 2014, ISBN 978-3-642-41903-4, S. 118 (eingeschränkte Vorschau in der Google-Buchsuche).