Messunsicherheit: Unterschied zwischen den Versionen

Messunsicherheit: Unterschied zwischen den Versionen

imported>Cms metrology
 
85.212.2.56 (Diskussion)
 
Zeile 1: Zeile 1:
Zu einem [[Messergebnis]] als Näherungswert für den [[Wahrer Wert|wahren Wert]] einer [[Messgröße]] soll immer die Angabe einer '''Messunsicherheit''' gehören. Diese grenzt einen [[Intervall (Mathematik)|Wertebereich]] ein, innerhalb dessen der wahre Wert der Messgröße mit einer anzugebenden Wahrscheinlichkeit liegt (üblich sind Bereiche für ungefähr 68 % und ungefähr 95 %). Dabei soll der als Messergebnis verwendete [[Schätzwert]] oder Einzel[[messwert]] bereits um bekannte [[systematische Abweichung]]en korrigiert sein.<ref name="DIN9-1" /><!--Kap. 3.4, Bem. 2 und Anm. 2-->
Zu einem [[Messergebnis]] als Näherungswert für den [[Wahrer Wert|wahren Wert]] einer [[Messgröße]] soll immer die Angabe einer '''Messunsicherheit''' gehören. Diese grenzt einen [[Intervall (Mathematik)|Wertebereich]] ein, innerhalb dessen der wahre Wert der Messgröße mit einer anzugebenden Wahrscheinlichkeit liegt (üblich sind Bereiche für ungefähr 68 % und ungefähr 95 %). Dabei soll der als Messergebnis verwendete [[Schätzwert]] oder Einzel[[messwert]] bereits um bekannte [[systematische Abweichung]]en korrigiert sein.<ref name="DIN9-1" /><!--Kap. 3.4, Bem. 2 und Anm. 2-->


Die Messunsicherheit ist positiv und wird ohne Vorzeichen angegeben.<ref name="DIN9-1" /><ref name="VIM" /> Messunsicherheiten sind selbst auch Schätzwerte. Die ''Messunsicherheit'' kann auch kurz ''Unsicherheit'' genannt werden. Der früher in ähnlichen Zusammenhängen gebräuchliche Begriff ''Fehler'' ist nicht mit dem Konzept der ''Messunsicherheit'' synonym.  
Die Messunsicherheit ist positiv und wird ohne Vorzeichen angegeben.<ref name="DIN9-1" /><ref name="VIM" /> Messunsicherheiten sind selbst auch Schätzwerte. Die ''Messunsicherheit'' kann auch kurz ''Unsicherheit'' genannt werden. Der früher in ähnlichen Zusammenhängen gebräuchliche Begriff ''Fehler'' ist nicht mit dem Konzept der ''Messunsicherheit'' synonym.


In aller Regel liegt eine [[Normalverteilung]] vor, und die Messunsicherheit legt einen zum Schätzwert der Messgröße [[Symmetrie (Geometrie)|symmetrisch]] liegenden Wertebereich fest.
In aller Regel liegt eine [[Normalverteilung]] vor, und die Messunsicherheit legt einen zum Schätzwert der Messgröße [[Symmetrie (Geometrie)|symmetrisch]] liegenden Wertebereich fest. Sie wird üblicherweise als Standardunsicherheit ''u'' oder als erweiterte Unsicherheit 2''u'' angegeben.


== Ermittlung der Messunsicherheit ==
== Ermittlung der Messunsicherheit ==
Eine Messunsicherheit ergibt sich aus der Kombination von einzelnen Beiträgen (Komponenten) der Eingangsgrößen einer Messung. Laut GUM kann eine Komponente der Messunsicherheit auf zwei Weisen ermittelt werden:<ref>{{Literatur|Autor = Michael Krystek|Titel = Berechnung der Messunsicherheit. Grundlagen und Anleitung für die praktische Anwendung|Herausgeber = |Sammelwerk = |Band = |Nummer = |Auflage = |Verlag = Beuth|Ort = |Jahr = 2012|Seiten = 279|ISBN = |Online = {{Google Buch| BuchID=smwgdGybMfkC| Seite= 279}}}}</ref><ref>{{Literatur|Autor = Susanne Heinicke|Titel = Aus Fehlern Wird Man Klug. Eine Genetisch-Didaktische Rekonstruktion des Messfehlers|Herausgeber = |Sammelwerk = |Band = |Nummer = |Auflage = |Verlag = |Ort = |Jahr = |Seiten = 208-211|ISBN = |Online = {{Google Buch|BuchID=pPNl9uKfCpIC| Seite=211}}}}</ref><ref name=":0">{{Literatur|Autor = Franz Adunka|Titel = Messunsicherheiten. Theorie und Praxis|Herausgeber = |Sammelwerk = |Band = |Nummer = |Auflage = |Verlag = |Ort = |Jahr = |Seiten = 93-95|ISBN = |Online = {{Google Buch| BuchID=z0lrIiJjT7gC| Seite=93 }}}}</ref>
 
* Typ-A: Ermittlung aus der statistischen Analyse mehrerer statistisch unabhängiger Messwerte aus einer Messwiederholung.
=== Analytisch-rechnerische Methode nach ISO/IEC Guide 98-3 ===
* Typ-B: Ermittlung ohne statistische Methoden, beispielsweise durch Entnahme der Werte aus einem [[Kalibrierung|Kalibrierschein]], aus der [[Genauigkeitsklasse]] eines Messgeräts oder aufgrund persönlicher Erfahrungen und vorangegangener Messungen. Auch die [[Fehlergrenze]] kann zur Ermittlung der Messunsicherheit vom Typ-B herangezogen werden,<ref>{{Literatur|Autor = Rainer Parthier|Titel = Messtechnik. Grundlagen für alle technischen Fachrichtungen und Wirtschaftsingenieure|Verlag = Springer-Verlag|Jahr = 2013|ISBN = 9783663107828|Online = {{Google Buch| BuchID=MUTyBQAAQBAJ| Seite=64 }}|Seiten = 64}}</ref> wobei man von einer Rechteckverteilung ausgeht.<ref name=":1">{{Literatur|Autor = Hans-Rolf Tränkler, Leonhard M. Reindl|Titel = Sensortechnik. Handbuch für Praxis und Wissenschaft|Verlag = Springer-Verlag|Jahr = 2015|ISBN = 9783642299421|Online = {{Google Buch| BuchID=G6cqBgAAQBAJ| Seite=29}}|Seiten = 29-31}}</ref><ref>{{Literatur|Autor = Edgar Dietrich, Alfred Schulze|Titel = Prüfprozesseignung. Prüfmittelfähigkeit und Messunsicherheit im aktuellen Normenumfeld|Verlag = Carl Hanser Verlag GmbH & Company KG|Jahr = 2014|ISBN = 9783446429253|Online = {{Google Buch| BuchID=VquQAgAAQBAJ| Seite=167}}|Seiten = 167}}</ref> Es handelt sich um eine A-priori-Verteilung.<ref name=":2">{{Literatur|Autor = Susanne Heinicke|Titel = Aus Fehlern Wird Man Klug: Eine Genetisch-Didaktische Rekonstruktion des Messfehlers|Verlag = Logos Verlag Berlin GmbH|Jahr = 2012|ISBN = 9783832529871|Online = {{Google Buch| BuchID=pPNl9uKfCpIC| Seite=208}}|Seiten = 208}}</ref>
Eine Messunsicherheit ergibt sich aus der Kombination von einzelnen Beiträgen (Komponenten) der Eingangsgrößen einer Messung. Laut ISO/IEC Guide 98-3 ([[GUM (Norm)|GUM]]) kann eine Komponente der Messunsicherheit auf zwei Weisen ermittelt werden:<ref>{{Literatur |Autor=Michael Krystek |Titel=Berechnung der Messunsicherheit. Grundlagen und Anleitung für die praktische Anwendung |Verlag=Beuth |Datum=2012 |Seiten=279 |Online={{Google Buch| BuchID=smwgdGybMfkC| Seite= 279}}}}</ref><ref>{{Literatur |Autor=Susanne Heinicke |Titel=Aus Fehlern Wird Man Klug. Eine Genetisch-Didaktische Rekonstruktion des Messfehlers |Ort=Berlin |Datum=2012 |ISBN=978-3-8325-2987-1 |Seiten=208-211 |Online={{Google Buch|BuchID=pPNl9uKfCpIC| Seite=211}}}}</ref><ref name=":0">{{Literatur |Autor=Franz Adunka |Titel=Messunsicherheiten. Theorie und Praxis |Datum=2007 |ISBN=978-3-8027-2205-9 |Seiten=93-95 |Online={{Google Buch| BuchID=z0lrIiJjT7gC| Seite=93 }}}}</ref>
Beide Methoden beruhen auf Wahrscheinlichkeitsverteilungen. Bei Typ-A wird die Varianz durch Messwiederholungen bestimmt und bei Typ-B wird auf andere Quellen zurückgegriffen.<ref name=":0" /> Die Ermittlungsmethode Typ-A folgt der [[Frequentistischer Wahrscheinlichkeitsbegriff|frequentistischen]] und Typ-B der [[Bayesscher Wahrscheinlichkeitsbegriff|bayesschen]] Interpretation der Wahrscheinlichkeit.<ref name=":2" /> Die Ermittlungsmethode Typ-B basiert auf der Bayes-Laplace-Theorie.<ref name=":1" />
 
* Typ A: Ermittlung aus der statistischen Analyse mehrerer statistisch unabhängiger Messwerte aus einer Messwiederholung.
* Typ B: Ermittlung ohne statistische Methoden, beispielsweise durch Entnahme der Werte aus einem [[Kalibrierung|Kalibrierschein]], aus der [[Genauigkeitsklasse]] eines Messgeräts oder aufgrund persönlicher Erfahrungen und vorangegangener Messungen. Auch die [[Fehlergrenze]] kann zur Ermittlung der Messunsicherheit vom Typ B herangezogen werden,<ref>{{Literatur |Autor=Rainer Parthier |Titel=Messtechnik. Grundlagen für alle technischen Fachrichtungen und Wirtschaftsingenieure |Verlag=Springer-Verlag |Datum=2013 |ISBN=978-3-663-10782-8 |Seiten=64 |Online={{Google Buch| BuchID=MUTyBQAAQBAJ| Seite=64 }}}}</ref> wobei man von einer Rechteckverteilung ausgeht.<ref name=":1">{{Literatur |Autor=Hans-Rolf Tränkler, Leonhard M. Reindl |Titel=Sensortechnik. Handbuch für Praxis und Wissenschaft |Verlag=Springer-Verlag |Datum=2015 |ISBN=978-3-642-29942-1 |Seiten=29-31 |Online={{Google Buch| BuchID=G6cqBgAAQBAJ| Seite=29}}}}</ref><ref>{{Literatur |Autor=Edgar Dietrich, Alfred Schulze |Titel=Prüfprozesseignung. Prüfmittelfähigkeit und Messunsicherheit im aktuellen Normenumfeld |Verlag=Carl Hanser Verlag GmbH & Company KG |Datum=2014 |ISBN=978-3-446-42925-3 |Seiten=167 |Online={{Google Buch| BuchID=VquQAgAAQBAJ| Seite=167}}}}</ref> Es handelt sich um eine A-priori-Verteilung.<ref name=":2">{{Literatur |Autor=Susanne Heinicke |Titel=Aus Fehlern Wird Man Klug: Eine Genetisch-Didaktische Rekonstruktion des Messfehlers |Verlag=Logos Verlag Berlin GmbH |Datum=2012 |ISBN=978-3-8325-2987-1 |Seiten=208 |Online={{Google Buch| BuchID=pPNl9uKfCpIC| Seite=208}}}}</ref>
Beide Methoden beruhen auf Wahrscheinlichkeitsverteilungen. Bei Typ A wird die Varianz durch Messwiederholungen bestimmt und bei Typ B wird auf andere Quellen zurückgegriffen.<ref name=":0" /> Die Ermittlungsmethode Typ A folgt der [[Frequentistischer Wahrscheinlichkeitsbegriff|frequentistischen]] und Typ B der [[Bayesscher Wahrscheinlichkeitsbegriff|bayesschen]] Interpretation der Wahrscheinlichkeit.<ref name=":2" /> Die Ermittlungsmethode Typ B basiert auf der Bayes-Laplace-Theorie.<ref name=":1" />
 
=== Ermittlung mithilfe von Ringversuchsdaten nach ISO 21748 ===
In einem [[Ringversuch]] analysieren mehrere Labors idealerweise identische Proben mit dem gleichen Messverfahren. Die Auswertung der Resultate führt zu zwei Parametern, die für die Ermittlung der Messunsicherheit von großer Bedeutung sind:<ref name=":3">ISO 21748:2017 ''Guidance for the use of repeatability, reproducibility and trueness estimates in measurement uncertainty evaluation''.</ref>
 
* Wiederholstandardabweichung ''s''<sub>r</sub> (kennzeichnet die mittlere Streuung der Werte innerhalb der Labors)
* Standardabweichung zwischen den Labors ''s''<sub>L</sub> (kennzeichnet die Streuung zwischen den Labors)
 
In den beiden Standardabweichungen sind alle oder zumindest die meisten Unsicherheitskomponenten enthalten, die nach der Methode ISO/IEC 98-3 einzeln berücksichtigt werden müssen. Dies gilt auch für Komponenten des Typs 2, die im einzelnen Labor nicht durch Mehrfachmessung erfasst werden können.<ref>{{Literatur |Autor=Bruno Wampfler, Samuel Affolter, Axel Ritter, Manfred Schmid |Hrsg= |Titel=Messunsicherheit in der Kunststoffanalytik - Ermittlung mit Ringversuchsdaten |Verlag=Carl Hanser Verlag |Ort=München |Datum=2017 |ISBN=978-3-446-45286-2 |Seiten=13-18}}</ref> Wenn die in ISO 21748 genannten Bedingungen erfüllt sind, ergibt sich die Standardunsicherheit ''u'' im einfachsten Fall durch folgende Beziehung:<ref name=":3" />
 
<math>u=s_R=\sqrt{s_L^2+s_r^2}</math>
 
''s''<sub>R</sub> ist die Vergleichstandardabweichung. In gewissen Fällen sind zusätzliche Komponenten wie [[Probenahme]], [[Probevorbereitung]] oder [[Heterogenität]] der Probe einzurechnen. Ringversuchsdaten können vom Wert der Messgröße abhängen.<ref name=":3" />


== Metrologische Bedeutung ==
== Metrologische Bedeutung ==


Die Messunsicherheiten in [[Wissenschaft]] und [[Technik]] sollen drei Aufgaben erfüllen.  
Die Messunsicherheiten in [[Wissenschaft]] und [[Technik]] sollen drei Aufgaben erfüllen.


* Sie sollen Messresultate objektivieren, indem sie festlegen, in welchem Intervall der wahre Wert der Messgröße zu erwarten ist. Nach klassischer [[Diktion]] waren das [[Konfidenzintervall]]e, deren [[Länge (Physik)|Längen]] von der [[Höhe]] eines Vertrauensniveaus abhingen. Die klassische Fehlerrechnung muss um sogenannte unbekannte systematische Messabweichungen erweitert werden. Daher kann der Messunsicherheit nicht auf dieselbe Weise eine [[Wahrscheinlichkeit]] zugewiesen werden, wie es bei ausschließlich statistischen Abweichungen möglich ist.
* Sie sollen Messresultate objektivieren, indem sie festlegen, in welchem Intervall der wahre Wert der Messgröße zu erwarten ist. Nach klassischer [[Diktion]] waren das [[Konfidenzintervall]]e, deren Größe von der Höhe eines Vertrauensniveaus abhingen. Die klassische Fehlerrechnung muss um sogenannte unbekannte systematische Messabweichungen erweitert werden. Daher kann der Messunsicherheit nicht auf dieselbe Weise eine [[Wahrscheinlichkeit]] zugewiesen werden, wie es bei ausschließlich statistischen Abweichungen möglich ist.


* Das auf diese Weise geschaffene Netz physikalischer [[Physikalische Konstante|Konstanten]] muss in sich widerspruchsfrei sein, d.&nbsp;h. berechnete man anhand einer gegebenen Verknüpfungsfunktion aus einer [[Teilmenge]] von Konstanten eine andere, numerisch bereits bekannte Konstante, so muss die aus der Unsicherheitsfortpflanzung hervorgehende Messunsicherheit wiederum den wahren Wert dieser Konstanten lokalisieren. Messunsicherheiten müssen also der Forderung nach „Rückverfolgbarkeit der wahren Werte“ genügen.
* Das auf diese Weise geschaffene Netz physikalischer [[Physikalische Konstante|Konstanten]] muss in sich widerspruchsfrei sein, d.&nbsp;h. berechnete man anhand einer gegebenen Verknüpfungsfunktion aus einer [[Teilmenge]] von Konstanten eine andere, numerisch bereits bekannte Konstante, so muss die aus der Unsicherheitsfortpflanzung hervorgehende Messunsicherheit wiederum den wahren Wert dieser Konstanten lokalisieren. Messunsicherheiten müssen also der Forderung nach „Rückverfolgbarkeit der wahren Werte“ genügen.
Zeile 22: Zeile 37:


== Quantitative Angaben ==
== Quantitative Angaben ==
Ein weiterer Kennwert ist die ''erweiterte Unsicherheit'' <math>U=k\cdot u</math>.<ref name="DIN9-3" /><!--Kap. 5.4.2--> Dieser Kennwert kennzeichnet einen Wertebereich, der den wahren Wert der Messgröße mit einer bestimmten Wahrscheinlichkeit enthält. Für den darin enthaltenen Erweiterungsfaktor <math>k</math> soll vorzugsweise <math>k=2</math> verwendet werden.<ref name="DIN9-3" /><!--Kap. 5.4.2--> Bei <math>k=2</math> beträgt die Wahrscheinlichkeit ungefähr 95&nbsp;%.
Ein weiterer Kennwert ist die ''erweiterte Unsicherheit'' <math>U=k\cdot u</math>.<ref name="DIN9-3" /><!--Kap. 5.4.2--> Dieser Kennwert kennzeichnet einen Wertebereich, der den wahren Wert der Messgröße mit einer bestimmten Wahrscheinlichkeit enthält. Für den darin enthaltenen Erweiterungsfaktor <math>k</math> soll vorzugsweise <math>k=2</math> verwendet werden.<ref name="DIN9-3" /><!--Kap. 5.4.2--> Bei <math>k=2</math> beträgt die Wahrscheinlichkeit ungefähr 95 %.
 
Im Sonderfall <math>k=1</math> spricht man (in Anlehnung an die Bezeichnung Standardabweichung) von einer ''Standardunsicherheit''. Hier beträgt die Wahrscheinlichkeit ungefähr 68 %.


Im Sonderfall <math>k=1</math> spricht man (in Anlehnung an die Bezeichnung Standardabweichung) von einer ''Standardunsicherheit''. Hier beträgt die Wahrscheinlichkeit ungefähr 68&nbsp;%.
;Zur Notation:
am Beispiel eines Messergebnisses <math>l=23{,}478\,2\;\mathrm m</math> mit einer Standardmessunsicherheit <math>u=0{,}003\,2\;\mathrm m</math>:<ref name="DIN9-3" /><!--Kap. 5.4.1--><ref name="EN80000-1" /><!--Kap. 7.3.4--><ref name="GUM" /><!--Kap. 7.2.2-->


;Zur Schreibweise: am Beispiel eines Messergebnisses <math>l=23{,}478\,2\;\mathrm m</math> mit einer Standardmessunsicherheit <math>u=0{,}003\,2\;\mathrm m</math>:<ref name="DIN9-3" /><!--Kap. 5.4.1--><ref name="EN80000-1" /><!--Kap. 7.3.4--><ref name="GUM" /><!--Kap. 7.2.2-->
* Die Angaben werden zusammengefasst zu <math>l=(23{,}478\,2\pm 0{,}003\,2)\;\mathrm m</math>, was einen Bereich von <math>23{,}475\,0\;\mathrm m</math> bis <math>23{,}481\,4\;\mathrm m</math> bedeutet.
:Die Schreibweise mit&nbsp;± soll bei Unsicherheiten, wenn immer möglich, vermieden werden<ref name="GUM" /><!--Kap. 7.2.2, NOTE-->,
:*wenn nicht klargestellt wird, für welche Kenngröße der Messunsicherheit bzw. für welchen Erweiterungsfaktor sie steht,
:*weil die Schreibweise mit&nbsp;± auch für andere Angaben wie den [[Vertrauensbereich]] oder [[Toleranz (Technik)|Toleranzen]] verwendet wird.


*Die Angaben werden zusammengefasst zu <math>l=(23{,}478\,2\pm 0{,}003\,2)\;\mathrm m</math>,
* Um auszudrücken, dass die Abweichungen nach oben und unten verschieden sind – beispielsweise bei einer logarithmischen Werteskala, kann man die Schreibweise <math>l=\bigl(23{,}478\,1\begin{smallmatrix}
:was gleichbedeutend ist mit einer Spanne von <math>23{,}475\,0\;\mathrm m</math> bis <math>23{,}481\,4\;\mathrm m</math>.
+0{,}003\,3 \\
*Speziell im Zusammenhang mit der Standardunsicherheit gibt es die Kurzschreibweise <math>l=23{,}478\,2(32)\;\mathrm m</math>. Hier stehen in Klammern die Ziffern der Standardunsicherheit mit denselben [[Stellenwertsystem|Stellenwerten]] wie die niederwertigsten angegebenen Ziffern des Messergebnisses. In <ref name="DIN9-3" /><ref name="GUM" /> findet sich zusätzlich die Schreibweise <math>l=23{,}478\,2(0{,}003\,2)\;\mathrm m</math>.
-0{,}003\,1
Die Schreibweise mit&nbsp;± soll bei Unsicherheiten vermieden werden,
\end{smallmatrix} \bigr)\;\mathrm m</math> verwenden.
:wenn nicht klargestellt wird, für welche Kenngröße der Messunsicherheit bzw. für welchen Erweiterungsfaktor sie steht,
* In<ref name="DIN9-3" /><ref name="GUM" /> findet sich die Schreibweise <math>l=23{,}478\,2(0{,}003\,2)\;\mathrm m</math>.
:weil die Schreibweise mit&nbsp;± auch für andere Angaben wie den [[Vertrauensbereich]] oder [[Toleranz_(Technik)|Toleranzen]] verwendet wird.
* Speziell im Zusammenhang mit der Standardunsicherheit ist die Kurzschreibweise <math>l=23{,}478\,2(3\,2)\;\mathrm m</math> üblich (manchmal auch „Klammerschreibweise“ genannt, auf Englisch {{nowrap|[[:en:Concise notation|''concise notation'']]<ref name="NIST">[http://physics.nist.gov/cgi-bin/cuu/Info/Constants/definitions.html ''Standard Uncertainty and Relative Standard Uncertainty'',] The [[NIST]] Reference on Constants, Units and Uncertainty, abgerufen am 16. März 2018.</ref>).}} Hier steht in Klammern der Zahlenwert der Standardunsicherheit in Einheiten des [[Stellenwertsystem|Stellenwerts]] der letzten angegebenen Ziffer.


== Hinterfragung der Fehlerrechnung ==
== Hinterfragung der Fehlerrechnung ==
Die „klassische“ [[Fehlerrechnung|Gauß'sche Fehlerrechnung]] behandelt ausschließlich zufällige Abweichungen. Indessen hatte schon [[Carl Friedrich Gauß|Gauß]] auf die [[Existenz]] und Bedeutung sogenannter [[Systematischer Fehler#Umgang mit der systematischen Messabweichung|unbekannter systematischer Messabweichungen]] hingewiesen. Diese entstehen durch [[zeit]]konstante, nach [[Betragsfunktion|Betrag]] und Vorzeichen unbekannte Störgrößen, und liegen in der Regel in einer mit den zufälligen Abweichungen vergleichbaren [[Größenordnung]]. Unbekannte systematische Messabweichungen müssen mit Hilfe von Intervallen eingegrenzt werden.
Die „klassische“ [[Fehlerrechnung|Gauß'sche Fehlerrechnung]] behandelt ausschließlich zufällige Abweichungen. Indessen hatte schon [[Carl Friedrich Gauß|Gauß]] auf die [[Existenz]] und Bedeutung sogenannter [[Systematische Abweichung#Umgang mit der systematischen Messabweichung|unbekannter systematischer Messabweichungen]] hingewiesen. Diese entstehen durch zeitlich konstante, nach [[Betragsfunktion|Betrag]] und Vorzeichen unbekannte Störgrößen, sie liegen in der Regel in einer mit den zufälligen Abweichungen vergleichbaren [[Größenordnung]]. Unbekannte systematische Messabweichungen müssen mit Hilfe von Intervallen eingegrenzt werden.


Der heutige [[Mainstream]] der [[Metrologie]] [[Interpretation|interpretiert]] den [[Prozess]] des Schätzens der Messunsicherheit als „technische Vorschrift“, der einheitlich zu praktizieren ist. Im Bereich des [[gesetz]]lichen [[Messwesen]]s und des [[Deutscher Kalibrierdienst|Kalibrierdienst]]es in [[Deutschland]] wird empfohlen, Messunsicherheiten nach [[DIN]] festzulegen. Dieser ''Leitfaden zur Angabe der Unsicherheit beim Messen'' entspricht der [[Europa|europäischen]] [[Vornorm]] ENV&nbsp;13005, welche die Empfehlung der [[International Organization for Standardization|ISO]] übernimmt; er hat auch unter dem [[Akronym]] „[[GUM (Norm)|GUM]]“<ref name="GUM" /> Bekanntheit erlangt.
Der heutige Mainstream der [[Metrologie]] [[Interpretation|interpretiert]] den [[Prozess]] des Schätzens der Messunsicherheit als „technische Vorschrift“, der einheitlich zu praktizieren ist. Im Bereich des [[gesetz]]lichen [[Messwesen]]s und des [[Deutscher Kalibrierdienst|Kalibrierdienstes]] in [[Deutschland]] wird empfohlen, Messunsicherheiten nach [[DIN]] festzulegen. Dieser ''Leitfaden zur Angabe der Unsicherheit beim Messen'' entspricht der [[Europa|europäischen]] [[Vornorm]] ENV&nbsp;13005, welche die Empfehlung der [[International Organization for Standardization|ISO]] übernimmt; er hat auch unter dem [[Akronym]] „[[GUM (Norm)|GUM]]“<ref name="GUM" /> Bekanntheit erlangt.


DIN V ENV 13005 ist zurückgezogen worden. Der Regelsetzer empfiehlt die Anwendung der „Technischen Regel“ ISO/IEC Guide 98-3:2008-09 ''Messunsicherheit - Teil 3: Leitfaden zur Angabe der Unsicherheit beim Messen''.
DIN V ENV 13005 ist zurückgezogen worden. Der Regelsetzer empfiehlt die Anwendung der „Technischen Regel“ ISO/IEC Guide 98-3:2008-09 ''Messunsicherheit Teil 3: Leitfaden zur Angabe der Unsicherheit beim Messen''.


== {{Anker|exakt}} Exakte Werte ==
== {{Anker|exakt}} Exakte Werte ==
„Exakter Wert“ ist ein Begriff aus der Metrologie. In diesem Kontext haben exakte Werte keine Messunsicherheit und keine systematische Abweichung.
„Exakter Wert“ ist ein Begriff aus der Metrologie. In diesem Kontext haben exakte Werte keine Messunsicherheit und keine systematische Abweichung.


So sind einige [[fundamentale Naturkonstante]]n exakt per Definition, andere (noch) nicht, siehe [[Internationales Einheitensystem#Zukünftige Entwicklungen|zukünftige Entwicklungen des Einheitensystems]]. Andere exakte Werte sind (noch) die Masse des [[Urkilogramm]]s (sie beträgt 1&nbsp;kg) und die Temperatur am Tripelpunkt des Wassers (273,16&nbsp;K), siehe [[Kelvin]]. Messungen dieser Größen sind schon mit Unsicherheiten verbunden, aber es ist nicht der Zahlenwert unsicher, sondern die Realisierung der durch die Größe und den Zahlenwert definierten Einheit.
So sind einige [[fundamentale Naturkonstante]]n exakt per Definition, andere nicht oder nicht mehr (siehe ''[[Internationales Einheitensystem#Neudefinition2019|Definition der SI-Basiseinheiten]]''). Beispielsweise ist die [[magnetische Feldkonstante]] jetzt mit einer Unsicherheit versehen.<ref>[http://physics.nist.gov/cgi-bin/cuu/Value?mu0] Direktlink CODATA, abgerufen 20. Mai 2019.</ref> Bei den mit einer gewissen Anzahl von Stellen exakt definierten Größen ist nicht der Zahlenwert unsicher, sondern die Realisierung der durch die Größe und den Zahlenwert definierten Einheit.


Andere exakte Werte sind mathematisch definierte [[irrationale Zahl]]en, wie die [[Kreiszahl]] <math>\pi</math> als Verhältnis von Umfang und Durchmesser von Kreisen (in euklidischer Geometrie). Die Verwendung irrationaler Zahlen in Berechnungen führt nicht zu Unsicherheit, aber zu (beherrschbaren) Rundungsfehlern, da sie sich nicht durch Brüche ganzer Zahlen darstellen lassen.
Andere exakte Werte sind mathematisch definierte [[irrationale Zahl]]en, wie die [[Kreiszahl]] <math>\pi</math> als Verhältnis von Umfang und Durchmesser von Kreisen (in euklidischer Geometrie).


Manche glatte Zahlen in Berechnungen sind exakte Werte, etwa die willkürlich definierten Umrechnungsfaktoren 12 zwischen [[Pfund|Troy Pound]] und [[Feinunze]] und 90 zwischen der Größe [[rechter Winkel]] und dem [[Grad (Winkel)|Winkelgrad]].
Manche glatte Zahlen in Berechnungen sind exakte Werte, etwa die willkürlich definierten Umrechnungsfaktoren 12 zwischen [[Pfund|Troy Pound]] und [[Feinunze]] und 90 zwischen der Größe [[rechter Winkel]] und dem [[Grad (Winkel)|Winkelgrad]].


Andere glatte Werte sind nur scheinbar exakt, wie der Faktor <math>\frac12</math> in der Formel für die [[kinetische Energie]], wobei es sich jedoch um die (meist ausreichend genaue) klassische Näherung handelt.
Exakte rationale Zahlen können in Formeln als Brüche geschrieben werden, also beispielsweise <math>1/2</math> und nicht <math>0{,}5</math>, um der falschen Annahme vorzubeugen, dass es eine implizite Unsicherheit in der letzten Dezimalstelle geben könnte.


== Siehe auch ==
== Siehe auch ==
Zeile 60: Zeile 81:
* [[Messgeräteabweichung]]
* [[Messgeräteabweichung]]
* [[Messunsicherheitsbudget]]
* [[Messunsicherheitsbudget]]
* [[Intervallarithmetik]]


== Literatur ==
== Literatur ==
Zeile 78: Zeile 100:
:Teil 6: Anwendung von Genauigkeitswerten in der Praxis [ISO 5725-6:1994 einschließlich Technisches Korrigendum 1:2001] (Ausgabe 2002-08)
:Teil 6: Anwendung von Genauigkeitswerten in der Praxis [ISO 5725-6:1994 einschließlich Technisches Korrigendum 1:2001] (Ausgabe 2002-08)
* Guide to the Expression of Uncertainty in Measurement, ISO, Internationale Organisation für Normung
* Guide to the Expression of Uncertainty in Measurement, ISO, Internationale Organisation für Normung
* ISO 21748 &#8222;Guidance for the use of repeatability, reproducibility and trueness estimates in measurement uncertainty estimation&#8221; (Ausgabe: 2010-10)
* ISO 21748 „Guidance for the use of repeatability, reproducibility and trueness estimates in measurement uncertainty estimation“ (Ausgabe: 2010-10)
* Weise, Klaus; Wöger, Wolfgang: Meßunsicherheit und Meßdatenauswertung. Weinheim: Wiley-VCH 1999. ISBN 3-527-29610-7
* Weise, Klaus; Wöger, Wolfgang: Meßunsicherheit und Meßdatenauswertung. Weinheim: Wiley-VCH 1999. ISBN 3-527-29610-7


Zeile 91: Zeile 113:
* [http://www.uncertainty.de/Ten_Theses.pdf Grabe, M. Ten Theses for a New GUM] (PDF-Datei; 236&nbsp;kB)
* [http://www.uncertainty.de/Ten_Theses.pdf Grabe, M. Ten Theses for a New GUM] (PDF-Datei; 236&nbsp;kB)
* [http://www.uncertainty.de/tm_2000_6_283.pdf Grabe, M. Gedanken zur Revision der Fehlerrechnung] (PDF-Datei; 225&nbsp;kB)
* [http://www.uncertainty.de/tm_2000_6_283.pdf Grabe, M. Gedanken zur Revision der Fehlerrechnung] (PDF-Datei; 225&nbsp;kB)
* [http://www.uncertainty.de Grabe, M. Proposal for a New Error Calculus]
* [http://www.uncertainty.de/ Grabe, M. Proposal for a New Error Calculus]
* [http://www.springer.com/physics/book/978-3-540-20944-7 Grabe, M. Measurement Uncertainties in Science and Technology, Springer 2005]
* [http://www.springer.com/physics/book/978-3-540-20944-7 Grabe, M. Measurement Uncertainties in Science and Technology, Springer 2005]
* [http://www.springer.com/physics/book/978-3-642-03304-9 Grabe, M. Generalized Gaussian Error Calculus, Springer 2010] als {{Google Buch | BuchID = kz8itFXLKEMC }}
* [http://www.springer.com/physics/book/978-3-642-03304-9 Grabe, M. Generalized Gaussian Error Calculus, Springer 2010] als {{Google Buch | BuchID = kz8itFXLKEMC }}
Zeile 97: Zeile 119:
== Einzelnachweise ==
== Einzelnachweise ==
<references>
<references>
<ref name="DIN9-1">DIN 1319-1:1995 ''Grundlagen der Messtechnik − Teil 1: Grundbegriffe''</ref>
<ref name="DIN9-1">
<ref name="DIN9-3">DIN 1319-3:1996 ''Grundlagen der Messtechnik − Teil 3: Auswertung von Messungen einer einzelnen Messgröße; Messunsicherheit''</ref>
DIN 1319-1:1995 ''Grundlagen der Messtechnik − Teil 1: Grundbegriffe.''
<ref name="EN80000-1">EN ISO 80000-1:2013, ''Größen und Einheiten – Teil 1: Allgemeines.''</ref>
</ref>
<ref name="GUM">JCGM 100:2008 [http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf ''Evaluation of measurement data – Guide to The expression of uncertainty in measurement (GUM)'']</ref>
<ref name="DIN9-3">
<ref name="VIM">JCGM 200:2012 [http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf ''International vocabulary of metrology — Basic and general concepts and associated terms (VIM)''], Definition 2.26</ref>
DIN 1319-3:1996 ''Grundlagen der Messtechnik − Teil 3: Auswertung von Messungen einer einzelnen Messgröße; Messunsicherheit.''
</ref>
<ref name="EN80000-1">
EN ISO 80000-1:2013, ''Größen und Einheiten – Teil 1: Allgemeines.''
</ref>
<ref name="GUM">
JCGM 100:2008 [http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf ''Evaluation of measurement data – Guide to The expression of uncertainty in measurement (GUM)''].
</ref>
<ref name="VIM">
JCGM 200:2012 [http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf ''International vocabulary of metrology — Basic and general concepts and associated terms (VIM)''], Definition 2.26.
</ref>
</references>
</references>


[[Kategorie:Metrologie]]
[[Kategorie:Metrologie]]

Aktuelle Version vom 13. August 2021, 10:47 Uhr

Zu einem Messergebnis als Näherungswert für den wahren Wert einer Messgröße soll immer die Angabe einer Messunsicherheit gehören. Diese grenzt einen Wertebereich ein, innerhalb dessen der wahre Wert der Messgröße mit einer anzugebenden Wahrscheinlichkeit liegt (üblich sind Bereiche für ungefähr 68 % und ungefähr 95 %). Dabei soll der als Messergebnis verwendete Schätzwert oder Einzelmesswert bereits um bekannte systematische Abweichungen korrigiert sein.[1]

Die Messunsicherheit ist positiv und wird ohne Vorzeichen angegeben.[1][2] Messunsicherheiten sind selbst auch Schätzwerte. Die Messunsicherheit kann auch kurz Unsicherheit genannt werden. Der früher in ähnlichen Zusammenhängen gebräuchliche Begriff Fehler ist nicht mit dem Konzept der Messunsicherheit synonym.

In aller Regel liegt eine Normalverteilung vor, und die Messunsicherheit legt einen zum Schätzwert der Messgröße symmetrisch liegenden Wertebereich fest. Sie wird üblicherweise als Standardunsicherheit u oder als erweiterte Unsicherheit 2u angegeben.

Ermittlung der Messunsicherheit

Analytisch-rechnerische Methode nach ISO/IEC Guide 98-3

Eine Messunsicherheit ergibt sich aus der Kombination von einzelnen Beiträgen (Komponenten) der Eingangsgrößen einer Messung. Laut ISO/IEC Guide 98-3 (GUM) kann eine Komponente der Messunsicherheit auf zwei Weisen ermittelt werden:[3][4][5]

  • Typ A: Ermittlung aus der statistischen Analyse mehrerer statistisch unabhängiger Messwerte aus einer Messwiederholung.
  • Typ B: Ermittlung ohne statistische Methoden, beispielsweise durch Entnahme der Werte aus einem Kalibrierschein, aus der Genauigkeitsklasse eines Messgeräts oder aufgrund persönlicher Erfahrungen und vorangegangener Messungen. Auch die Fehlergrenze kann zur Ermittlung der Messunsicherheit vom Typ B herangezogen werden,[6] wobei man von einer Rechteckverteilung ausgeht.[7][8] Es handelt sich um eine A-priori-Verteilung.[9]

Beide Methoden beruhen auf Wahrscheinlichkeitsverteilungen. Bei Typ A wird die Varianz durch Messwiederholungen bestimmt und bei Typ B wird auf andere Quellen zurückgegriffen.[5] Die Ermittlungsmethode Typ A folgt der frequentistischen und Typ B der bayesschen Interpretation der Wahrscheinlichkeit.[9] Die Ermittlungsmethode Typ B basiert auf der Bayes-Laplace-Theorie.[7]

Ermittlung mithilfe von Ringversuchsdaten nach ISO 21748

In einem Ringversuch analysieren mehrere Labors idealerweise identische Proben mit dem gleichen Messverfahren. Die Auswertung der Resultate führt zu zwei Parametern, die für die Ermittlung der Messunsicherheit von großer Bedeutung sind:[10]

  • Wiederholstandardabweichung sr (kennzeichnet die mittlere Streuung der Werte innerhalb der Labors)
  • Standardabweichung zwischen den Labors sL (kennzeichnet die Streuung zwischen den Labors)

In den beiden Standardabweichungen sind alle oder zumindest die meisten Unsicherheitskomponenten enthalten, die nach der Methode ISO/IEC 98-3 einzeln berücksichtigt werden müssen. Dies gilt auch für Komponenten des Typs 2, die im einzelnen Labor nicht durch Mehrfachmessung erfasst werden können.[11] Wenn die in ISO 21748 genannten Bedingungen erfüllt sind, ergibt sich die Standardunsicherheit u im einfachsten Fall durch folgende Beziehung:[10]

$ u=s_{R}={\sqrt {s_{L}^{2}+s_{r}^{2}}} $

sR ist die Vergleichstandardabweichung. In gewissen Fällen sind zusätzliche Komponenten wie Probenahme, Probevorbereitung oder Heterogenität der Probe einzurechnen. Ringversuchsdaten können vom Wert der Messgröße abhängen.[10]

Metrologische Bedeutung

Die Messunsicherheiten in Wissenschaft und Technik sollen drei Aufgaben erfüllen.

  • Sie sollen Messresultate objektivieren, indem sie festlegen, in welchem Intervall der wahre Wert der Messgröße zu erwarten ist. Nach klassischer Diktion waren das Konfidenzintervalle, deren Größe von der Höhe eines Vertrauensniveaus abhingen. Die klassische Fehlerrechnung muss um sogenannte unbekannte systematische Messabweichungen erweitert werden. Daher kann der Messunsicherheit nicht auf dieselbe Weise eine Wahrscheinlichkeit zugewiesen werden, wie es bei ausschließlich statistischen Abweichungen möglich ist.
  • Das auf diese Weise geschaffene Netz physikalischer Konstanten muss in sich widerspruchsfrei sein, d. h. berechnete man anhand einer gegebenen Verknüpfungsfunktion aus einer Teilmenge von Konstanten eine andere, numerisch bereits bekannte Konstante, so muss die aus der Unsicherheitsfortpflanzung hervorgehende Messunsicherheit wiederum den wahren Wert dieser Konstanten lokalisieren. Messunsicherheiten müssen also der Forderung nach „Rückverfolgbarkeit der wahren Werte“ genügen.
  • Messunsicherheiten sollen Theorie und Experiment objektiv vergleichbar machen. Sie werden als Mittel verwendet, eine zur Debatte stehende neue Theorie entweder zu verwerfen oder sie zu bestätigen.

Quantitative Angaben

Ein weiterer Kennwert ist die erweiterte Unsicherheit $ U=k\cdot u $.[12] Dieser Kennwert kennzeichnet einen Wertebereich, der den wahren Wert der Messgröße mit einer bestimmten Wahrscheinlichkeit enthält. Für den darin enthaltenen Erweiterungsfaktor $ k $ soll vorzugsweise $ k=2 $ verwendet werden.[12] Bei $ k=2 $ beträgt die Wahrscheinlichkeit ungefähr 95 %.

Im Sonderfall $ k=1 $ spricht man (in Anlehnung an die Bezeichnung Standardabweichung) von einer Standardunsicherheit. Hier beträgt die Wahrscheinlichkeit ungefähr 68 %.

Zur Notation

am Beispiel eines Messergebnisses $ l=23{,}478\,2\;\mathrm {m} $ mit einer Standardmessunsicherheit $ u=0{,}003\,2\;\mathrm {m} $:[12][13][14]

  • Die Angaben werden zusammengefasst zu $ l=(23{,}478\,2\pm 0{,}003\,2)\;\mathrm {m} $, was einen Bereich von $ 23{,}475\,0\;\mathrm {m} $ bis $ 23{,}481\,4\;\mathrm {m} $ bedeutet.
Die Schreibweise mit ± soll bei Unsicherheiten, wenn immer möglich, vermieden werden[14],
  • wenn nicht klargestellt wird, für welche Kenngröße der Messunsicherheit bzw. für welchen Erweiterungsfaktor sie steht,
  • weil die Schreibweise mit ± auch für andere Angaben wie den Vertrauensbereich oder Toleranzen verwendet wird.
  • Um auszudrücken, dass die Abweichungen nach oben und unten verschieden sind – beispielsweise bei einer logarithmischen Werteskala, kann man die Schreibweise $ l={\bigl (}23{,}478\,1{\begin{smallmatrix}+0{,}003\,3\\-0{,}003\,1\end{smallmatrix}}{\bigr )}\;\mathrm {m} $ verwenden.
  • In[12][14] findet sich die Schreibweise $ l=23{,}478\,2(0{,}003\,2)\;\mathrm {m} $.
  • Speziell im Zusammenhang mit der Standardunsicherheit ist die Kurzschreibweise $ l=23{,}478\,2(3\,2)\;\mathrm {m} $ üblich (manchmal auch „Klammerschreibweise“ genannt, auf Englisch concise notation[15]). Hier steht in Klammern der Zahlenwert der Standardunsicherheit in Einheiten des Stellenwerts der letzten angegebenen Ziffer.

Hinterfragung der Fehlerrechnung

Die „klassische“ Gauß'sche Fehlerrechnung behandelt ausschließlich zufällige Abweichungen. Indessen hatte schon Gauß auf die Existenz und Bedeutung sogenannter unbekannter systematischer Messabweichungen hingewiesen. Diese entstehen durch zeitlich konstante, nach Betrag und Vorzeichen unbekannte Störgrößen, sie liegen in der Regel in einer mit den zufälligen Abweichungen vergleichbaren Größenordnung. Unbekannte systematische Messabweichungen müssen mit Hilfe von Intervallen eingegrenzt werden.

Der heutige Mainstream der Metrologie interpretiert den Prozess des Schätzens der Messunsicherheit als „technische Vorschrift“, der einheitlich zu praktizieren ist. Im Bereich des gesetzlichen Messwesens und des Kalibrierdienstes in Deutschland wird empfohlen, Messunsicherheiten nach DIN festzulegen. Dieser Leitfaden zur Angabe der Unsicherheit beim Messen entspricht der europäischen Vornorm ENV 13005, welche die Empfehlung der ISO übernimmt; er hat auch unter dem Akronym „GUM[14] Bekanntheit erlangt.

DIN V ENV 13005 ist zurückgezogen worden. Der Regelsetzer empfiehlt die Anwendung der „Technischen Regel“ ISO/IEC Guide 98-3:2008-09 Messunsicherheit – Teil 3: Leitfaden zur Angabe der Unsicherheit beim Messen.

Exakte Werte

„Exakter Wert“ ist ein Begriff aus der Metrologie. In diesem Kontext haben exakte Werte keine Messunsicherheit und keine systematische Abweichung.

So sind einige fundamentale Naturkonstanten exakt per Definition, andere nicht oder nicht mehr (siehe Definition der SI-Basiseinheiten). Beispielsweise ist die magnetische Feldkonstante jetzt mit einer Unsicherheit versehen.[16] Bei den mit einer gewissen Anzahl von Stellen exakt definierten Größen ist nicht der Zahlenwert unsicher, sondern die Realisierung der durch die Größe und den Zahlenwert definierten Einheit.

Andere exakte Werte sind mathematisch definierte irrationale Zahlen, wie die Kreiszahl $ \pi $ als Verhältnis von Umfang und Durchmesser von Kreisen (in euklidischer Geometrie).

Manche glatte Zahlen in Berechnungen sind exakte Werte, etwa die willkürlich definierten Umrechnungsfaktoren 12 zwischen Troy Pound und Feinunze und 90 zwischen der Größe rechter Winkel und dem Winkelgrad.

Exakte rationale Zahlen können in Formeln als Brüche geschrieben werden, also beispielsweise $ 1/2 $ und nicht $ 0{,}5 $, um der falschen Annahme vorzubeugen, dass es eine implizite Unsicherheit in der letzten Dezimalstelle geben könnte.

Siehe auch

Literatur

  • DIN 1319 „Grundlagen der Messtechnik“
Teil 1: Grundbegriffe (Ausgabe: 1995-01)
Teil 2: Begriffe für Messmittel (Ausgabe: 2005-10)
Teil 3: Auswertung von Messungen einer einzelnen Meßgröße, Meßunsicherheit (Ausgabe: 1996-05)
Teil 4: Auswertung von Messungen; Meßunsicherheit (Ausgabe: 1999-02)
  • DIN, Deutsches Institut für Normung e. V. (Hrsg.): Leitfaden zur Angabe der Messunsicherheit beim Messen. 1. Auflage. Beuth Verlag GmbH, Berlin 1995, ISBN 3-410-13405-0
  • DIN V ENV 13005:1999-06, Ausgabe 1999-06 „Leitfaden zur Angabe der Unsicherheit beim Messen“ Deutsche Fassung ENV 13005:1999, Beuth Verlag GmbH, Berlin
  • DIN ISO 5725 „Genauigkeit (Richtigkeit und Präzision) von Messverfahren und Messergebnissen“
Teil 1: Allgemeine Grundlagen und Begriffe (ISO 5725-1 : 1994) (Ausgabe: 1997-11)
Teil 2: Grundlegende Methode für Ermittlung der Wiederhol- und Vergleichpräzision eines vereinheitlichten Messverfahrens (ISO 5725-2:1994 einschließlich Technisches Korrigendum 1:2002) (Ausgabe: 2002-12)
Teil 3: Präzisionsmaße eines vereinheitlichten Messverfahrens unter Zwischenbedingungen (ISO 5725-3:1994 einschließlich Technisches Korrigendum 1:2001) (Ausgabe: 2003-02)
Teil 4: Grundlegende Methoden für die Ermittlung der Richtigkeit eines vereinheitlichten Messverfahrens (ISO 5725-4:1994) (Ausgabe: 2003-01)
Teil 5: Alternative Methoden für die Ermittlung der Präzision eines vereinheitlichten Messverfahrens (ISO 5725-5:1998) (Ausgabe: 2006-04)
Teil 6: Anwendung von Genauigkeitswerten in der Praxis [ISO 5725-6:1994 einschließlich Technisches Korrigendum 1:2001] (Ausgabe 2002-08)
  • Guide to the Expression of Uncertainty in Measurement, ISO, Internationale Organisation für Normung
  • ISO 21748 „Guidance for the use of repeatability, reproducibility and trueness estimates in measurement uncertainty estimation“ (Ausgabe: 2010-10)
  • Weise, Klaus; Wöger, Wolfgang: Meßunsicherheit und Meßdatenauswertung. Weinheim: Wiley-VCH 1999. ISBN 3-527-29610-7

Weblinks

GUM

Kritik am GUM und Alternativer Ansatz

Einzelnachweise

  1. 1,0 1,1 DIN 1319-1:1995 Grundlagen der Messtechnik − Teil 1: Grundbegriffe.
  2. JCGM 200:2012 International vocabulary of metrology — Basic and general concepts and associated terms (VIM), Definition 2.26.
  3. Michael Krystek: Berechnung der Messunsicherheit. Grundlagen und Anleitung für die praktische Anwendung. Beuth, 2012, S. 279 (eingeschränkte Vorschau in der Google-Buchsuche).
  4. Susanne Heinicke: Aus Fehlern Wird Man Klug. Eine Genetisch-Didaktische Rekonstruktion des Messfehlers. Berlin 2012, ISBN 978-3-8325-2987-1, S. 208–211 (eingeschränkte Vorschau in der Google-Buchsuche).
  5. 5,0 5,1 Franz Adunka: Messunsicherheiten. Theorie und Praxis. 2007, ISBN 978-3-8027-2205-9, S. 93–95 (eingeschränkte Vorschau in der Google-Buchsuche).
  6. Rainer Parthier: Messtechnik. Grundlagen für alle technischen Fachrichtungen und Wirtschaftsingenieure. Springer-Verlag, 2013, ISBN 978-3-663-10782-8, S. 64 (eingeschränkte Vorschau in der Google-Buchsuche).
  7. 7,0 7,1 Hans-Rolf Tränkler, Leonhard M. Reindl: Sensortechnik. Handbuch für Praxis und Wissenschaft. Springer-Verlag, 2015, ISBN 978-3-642-29942-1, S. 29–31 (eingeschränkte Vorschau in der Google-Buchsuche).
  8. Edgar Dietrich, Alfred Schulze: Prüfprozesseignung. Prüfmittelfähigkeit und Messunsicherheit im aktuellen Normenumfeld. Carl Hanser Verlag GmbH & Company KG, 2014, ISBN 978-3-446-42925-3, S. 167 (eingeschränkte Vorschau in der Google-Buchsuche).
  9. 9,0 9,1 Susanne Heinicke: Aus Fehlern Wird Man Klug: Eine Genetisch-Didaktische Rekonstruktion des Messfehlers. Logos Verlag Berlin GmbH, 2012, ISBN 978-3-8325-2987-1, S. 208 (eingeschränkte Vorschau in der Google-Buchsuche).
  10. 10,0 10,1 10,2 ISO 21748:2017 Guidance for the use of repeatability, reproducibility and trueness estimates in measurement uncertainty evaluation.
  11. Bruno Wampfler, Samuel Affolter, Axel Ritter, Manfred Schmid: Messunsicherheit in der Kunststoffanalytik - Ermittlung mit Ringversuchsdaten. Carl Hanser Verlag, München 2017, ISBN 978-3-446-45286-2, S. 13–18.
  12. 12,0 12,1 12,2 12,3 DIN 1319-3:1996 Grundlagen der Messtechnik − Teil 3: Auswertung von Messungen einer einzelnen Messgröße; Messunsicherheit.
  13. EN ISO 80000-1:2013, Größen und Einheiten – Teil 1: Allgemeines.
  14. 14,0 14,1 14,2 14,3 JCGM 100:2008 Evaluation of measurement data – Guide to The expression of uncertainty in measurement (GUM).
  15. Standard Uncertainty and Relative Standard Uncertainty, The NIST Reference on Constants, Units and Uncertainty, abgerufen am 16. März 2018.
  16. [1] Direktlink CODATA, abgerufen 20. Mai 2019.