Reluktanzkraft: Unterschied zwischen den Versionen

Reluktanzkraft: Unterschied zwischen den Versionen

imported>Snoopy1964
K (Änderungen von 46.253.242.50 (Diskussion) auf die letzte Version von 188.195.19.120 zurückgesetzt)
 
77.23.91.71 (Diskussion)
(→‎Veränderlicher Luftspalt: Sorry. Denkfehler. Vielleicht wäre besser „nimmt mit zunehmender Breite des Luftspalts ab“?)
 
Zeile 1: Zeile 1:
[[Datei:Prinzip der Reluktanzkraft.png|thumb|Prinzip]]
{{QS-Physik|Unerledigt=2018}}
Die '''Reluktanzkraft''' oder auch '''Maxwellsche Kraft''' entsteht aufgrund der Änderung des [[Magnetischer Widerstand|magnetischen Widerstands]], der auch als [[Reluktanz]] bezeichnet wird. Sie wirkt immer so, dass sich der magnetische Widerstand verringert und die Induktivität steigt und ist der [[Magnetostatik]] zuzurechnen. Diese Eigenschaft wird bei einigen Typen von [[Elektrische_Maschine|elektrischen Maschinen]] benutzt, zum Beispiel bei [[geschaltete Reluktanzmaschine|geschalteten Reluktanzmaschinen]], [[Transversalflussmaschine]]n, dem [[Synchron-Reluktanzmotor]] oder elektromagnetischen [[Lager (Maschinenelement)|Lagern]].  
[[Datei:Prinzip der Reluktanzkraft.png|mini|Prinzip: Ein verschiebbares Stück eines [[Magnetkern]]s wird von der Reluktanzkraft in die Lücke hinein gezogen]]
Die '''Reluktanzkraft''' <math>F_\mathrm{R}</math> oder auch '''Maxwellsche Kraft''' entsteht aufgrund der Änderung des [[Magnetischer Widerstand|magnetischen Widerstands]], der auch als [[Reluktanz]] bezeichnet wird. Die Reluktanzkraft wirkt immer so, dass sich der magnetische Widerstand verringert und die [[Induktivität]] steigt und ist der [[Magnetostatik]] zuzurechnen.
 
Diese Eigenschaft wird bei einigen Typen von [[Elektrische Maschine|elektrischen Maschinen]] benutzt, zum Beispiel bei [[geschaltete Reluktanzmaschine|geschalteten Reluktanzmaschinen]], [[Transversalflussmaschine]]n, dem [[Synchron-Reluktanzmotor]] oder elektromagnetischen [[Lager (Maschinenelement)|Lagern]].


Eine verwandte Kraft ist die [[Lorentzkraft]], welche die Kraftwirkung auf eine bewegte [[elektrische Ladung]] in einem äußeren elektromagnetischen Feld beschreibt.
Eine verwandte Kraft ist die [[Lorentzkraft]], welche die Kraftwirkung auf eine bewegte [[elektrische Ladung]] in einem äußeren elektromagnetischen Feld beschreibt.


== Beweglicher Kern ==
== Beweglicher Kern ==
Die Kraft kann aus der Energieänderung, die sich aus einer infinitesimalen Verschiebung ergibt, hergeleitet werden:
Die Reluktanzkraft kann hergeleitet werden aus der Änderung der Energie <math>W</math>, die sich bei einer [[Infinitesimalrechnung|infinitesimalen]] Verschiebung <math>dx</math> des beweglichen Stücks zur Seite ergibt:
 
:<math>F_\mathrm{R} = \frac{\mathrm dW}{\mathrm dx}</math>,
:<math>W = \frac 1 2 \cdot I^2 \cdot L</math>
:<math>\Rightarrow F_\mathrm{R} = \frac 1 2 \cdot I^2 \cdot \frac{\mathrm d L(x)}{\mathrm dx}</math>.


:<math>F_R = \frac{dW}{dx}</math>,
Darin ist
:<math>W = \frac{1}{2} \cdot I^2 \cdot L \Rightarrow F_R = \frac{1}{2} \cdot I^2 \cdot \frac{d L(x)}{dx}</math>.
* <math>I</math> der [[elektrischer Strom|elektrische Strom]] und
* <math>L</math> die Induktivität.


Die Induktivität eines magnetischen Kreises mit [[Luftspalt (Magnetismus)|Luftspalt]] ist gegeben durch
Die Induktivität <math>L</math> eines [[magnetischer Kreis|magnetischen Kreises]] mit [[Luftspalt (Magnetismus)|Luftspalt]] ist gegeben durch


:<math>L= \frac{N^2}{R_{m,\text{Kern}}+R_{m,\text{Luft}}}\approx \frac{N^2}{R_{m,\text{Luft}}} = N^2 \cdot \frac {\mu_0\cdot A}{l_\text{Luft}}</math>  
:<math>L = \frac{N^2}{R_{m, \text{Kern}} + R_{m, \text{Luft}}} \approx \frac{N^2}{R_{m, \text{Luft}}} = N^2 \cdot \frac {\mu_0 \cdot A}{l_\text{Luft}}</math>


mit <math>N</math> die Anzahl der Windungen, wobei für die Näherung der [[Magnetischer Widerstand|magnetische Widerstand]] <math>R_{m}</math> des Kerns gegenüber dem Luftspalt vernachlässigt wird. Dabei ist <math>l_\text{Luft}</math> die Summe der Breite beider Spalten.
mit
* der Anzahl <math>N</math> der [[Spule (Elektrotechnik)|Spulen]]windungen
* dem [[Magnetischer Widerstand|magnetischen Widerstand]] <math>R_{m}</math>, wobei für die Näherung der magnetische Widerstand des Kerns gegenüber demjenigen des Luftspalts vernachlässigt wird
* der [[magnetische Feldkonstante]] <math>\mu_0</math>
* der Stirnfläche <math>A</math> des magnetischen Kreises am Luftspalt, durch welche die [[Feldlinien]] des magnetischen Feldes hindurchtreten
* der Summe <math>l_\text{Luft}</math> der Größe beider Luftspalte.


Die (idealisierte) Fläche, die für den magnetischen Kreis zur Verfügung steht, ergibt sich zu
Die (idealisierte) Fläche, die für den magnetischen Kreis zur Verfügung steht, ergibt sich zu


:<math>A = (x_0 - |x|) \cdot y_0\ = x_0 \cdot y_0 - |x| \cdot y_0\ ;\ \frac{dA}{d|x|} = \left\{ \begin{matrix}- y_0,\quad \text{wenn } |x|>0\\ 0,\quad \text{wenn }   x=0 \end{matrix} \right.</math>
:<math>A = (x_0 - |x|) \cdot y_0\ = x_0 \cdot y_0 - |x| \cdot y_0</math>
:<math>\Rightarrow \frac{\mathrm dA}{\mathrm d|x|} = \left\{ \begin{matrix}- y_0, \quad \text{wenn } |x|>0\\ 0, \quad \text{wenn } x=0 \end{matrix} \right.</math>


Dabei ist die Richtung der Auslenkung x unerheblich, daher die [[Vektor#Länge/Betrag eines Vektors|Betragsstriche]]. Die Größe <math>y_0</math> bezeichnet die Tiefe.
Dabei ist die Richtung der [[Auslenkung]]&nbsp;<math>x</math> unerheblich, daher die [[Vektor #Länge/Betrag eines Vektors|Betragsstriche]]. Die Größe <math>y_0</math> bezeichnet die Tiefe.


Einsetzen liefert
Einsetzen liefert


:<math>\frac{dL}{d|x|}= N^2 \cdot \mu_0 \cdot \frac{1}{l_\text{Luft}} \frac{dA}{d|x|}=- N^2 \cdot \mu_0 \cdot \frac{ y_0}{l_\text{Luft}}</math>
:<math>\frac{\mathrm dL}{\mathrm d|x|} = N^2 \cdot \frac {\mu_0}{l_\text{Luft}} \cdot \frac{\mathrm dA}{\mathrm d|x|} = - N^2 \cdot \mu_0 \cdot \frac{y_0}{l_\text{Luft}}</math>


so dass auf den beweglichen Teil des ausgelenkten Kerns eine Kraft  
so dass auf den beweglichen Teil des ausgelenkten Kerns eine Kraft


:<math>F_R = - \frac{1}{2} \cdot I^2 \cdot N^2 \cdot \mu_0 \cdot \frac{y_0}{ l_\text{Luft}}</math>
:<math>\Rightarrow F_\mathrm{R} = - \frac 1 2 \cdot (I \cdot N)^2 \cdot \mu_0 \cdot \frac{y_0}{ l_\text{Luft}}</math>


wirkt, die ihn zur Mitte hin zieht. Diese ist unabhängig von der Größe der Auslenkung, außer natürlich, wenn die obige Ableitung <math>\frac{dA}{d|x|} = - y_0</math> ihre Gültigkeit verliert. Dies ist der Fall, wenn <math>|x|</math> zu groß wird.
wirkt, die ihn zur Mitte hin zieht. Diese ist ''unabhängig'' von der Größe der Auslenkung, außer wenn die obige Ableitung <math>\frac{\mathrm dA}{\mathrm d|x|} = - y_0</math> ihre Gültigkeit verliert. Dies ist der Fall, wenn <math>|x|</math> zu groß wird.


== Luftspalt ==
== Veränderlicher Luftspalt ==
[[Datei:EisenkernMitLuftspalt.svg|thumb|Zugkraft im Luftspalt]]
[[Datei:EisenkernMitLuftspalt.svg|mini|Zugkraft im Luftspalt]]
Analog zu oben gilt
Analog zu oben gilt
:<math>F_R = \frac{dW}{dl_\text{Luft}}=\frac{1}{2} \cdot I^2 \cdot \frac{dL(l_\text{Luft})}{dl_\text{Luft}}</math>.
:<math>F_\mathrm{R} = \frac{\mathrm dW}{\mathrm dl_\text{Luft}}=\frac{1}{2} \cdot I^2 \cdot \frac{\mathrm dL(l_\text{Luft})}{\mathrm dl_\text{Luft}}</math>.
Für die Induktivität gilt auch hier näherungsweise
Für die Induktivität gilt auch hier näherungsweise
:<math>L\approx \frac{N^2}{R_{m,\text{Luft}}} = N^2\cdot A \cdot \mu_0 \cdot \frac {1}{l_\text{Luft}}</math>.
:<math>L\approx \frac{N^2}{R_{m,\text{Luft}}} = N^2\cdot A \cdot \mu_0 \cdot \frac {1}{l_\text{Luft}}</math>.
Mit der [[Potenzregel]] erhält man
Mit der [[Potenzregel]] erhält man
:<math>\frac{dL}{dl_\text{Luft}} = N^2 \cdot A \cdot \mu_0 \cdot \frac{-1}{{l_\text{Luft}}^2}</math>.
:<math>\frac{\mathrm dL}{\mathrm dl_\text{Luft}} = N^2 \cdot A \cdot \mu_0 \cdot \frac{-1}{{l_\text{Luft}}^2}</math>.


Einsetzen in die Formel für <math>F_R</math> liefert das Ergebnis:
Einsetzen in die Formel für <math>F_\mathrm{R}</math> liefert das Ergebnis:
:<math>F_R = -\frac{1}{2} \cdot I^2 \cdot N^2 \cdot A \cdot \mu_0 \cdot \frac{1}{{l_\text{Luft}}^2}</math>.
:<math>F_\mathrm{R} = -\frac{1}{2} \cdot I^2 \cdot N^2 \cdot A \cdot \mu_0 \cdot \frac{1}{{l_\text{Luft}}^2}</math>.


Da bei einer Verkleinerung des Luftspalts die Induktivität steigt, wirkt die Reluktanzkraft in diese Richtung. Die Kraft nimmt mit der Breite des Luftspalts ab. Das Maximum der Reluktanzkraft ist erreicht, wenn der Luftspalt gegen null geht. Allerdings gilt bei sehr kleinem Luftspalt die Näherungsformel für die Induktivität nicht mehr, da dann der magnetische Widerstand des Kerns nicht mehr vernachlässigt werden kann.
Da bei einer Verkleinerung des Luftspalts die Induktivität steigt, wirkt die Reluktanzkraft in diese Richtung. Die Kraft nimmt mit der Breite des Luftspalts ab. Das Maximum der Reluktanzkraft ist erreicht, wenn der Luftspalt gegen null geht. Allerdings gilt bei sehr kleinem Luftspalt die Näherungsformel für die Induktivität nicht mehr, da dann der magnetische Widerstand des Kerns nicht mehr vernachlässigt werden kann.
Zeile 57: Zeile 71:


== Weblinks ==
== Weblinks ==
* [http://www.energie.ch/maxwellkraft Maxwellkraft] auf www.energie.ch
* [https://energie.ch/maxwellkraft/ Maxwellkraft] auf www.energie.ch


[[Kategorie:Theoretische Elektrotechnik]]
[[Kategorie:Theoretische Elektrotechnik]]
[[Kategorie:Magnetismus]]
[[Kategorie:Magnetismus]]

Aktuelle Version vom 26. Oktober 2021, 06:19 Uhr

Icon tools.svg
Dieser Artikel wurde den Mitarbeitern der Redaktion Physik zur Qualitätssicherung aufgetragen. Wenn du dich mit dem Thema auskennst, bist du herzlich eingeladen, dich an der Prüfung und möglichen Verbesserung des Artikels zu beteiligen. Der Meinungsaustausch darüber findet derzeit nicht auf der Artikeldiskussionsseite, sondern auf der Qualitätssicherungs-Seite der Physik statt.
Prinzip: Ein verschiebbares Stück eines Magnetkerns wird von der Reluktanzkraft in die Lücke hinein gezogen

Die Reluktanzkraft $ F_{\mathrm {R} } $ oder auch Maxwellsche Kraft entsteht aufgrund der Änderung des magnetischen Widerstands, der auch als Reluktanz bezeichnet wird. Die Reluktanzkraft wirkt immer so, dass sich der magnetische Widerstand verringert und die Induktivität steigt und ist der Magnetostatik zuzurechnen.

Diese Eigenschaft wird bei einigen Typen von elektrischen Maschinen benutzt, zum Beispiel bei geschalteten Reluktanzmaschinen, Transversalflussmaschinen, dem Synchron-Reluktanzmotor oder elektromagnetischen Lagern.

Eine verwandte Kraft ist die Lorentzkraft, welche die Kraftwirkung auf eine bewegte elektrische Ladung in einem äußeren elektromagnetischen Feld beschreibt.

Beweglicher Kern

Die Reluktanzkraft kann hergeleitet werden aus der Änderung der Energie $ W $, die sich bei einer infinitesimalen Verschiebung $ dx $ des beweglichen Stücks zur Seite ergibt:

$ F_{\mathrm {R} }={\frac {\mathrm {d} W}{\mathrm {d} x}} $,
$ W={\frac {1}{2}}\cdot I^{2}\cdot L $
$ \Rightarrow F_{\mathrm {R} }={\frac {1}{2}}\cdot I^{2}\cdot {\frac {\mathrm {d} L(x)}{\mathrm {d} x}} $.

Darin ist

Die Induktivität $ L $ eines magnetischen Kreises mit Luftspalt ist gegeben durch

$ L={\frac {N^{2}}{R_{m,{\text{Kern}}}+R_{m,{\text{Luft}}}}}\approx {\frac {N^{2}}{R_{m,{\text{Luft}}}}}=N^{2}\cdot {\frac {\mu _{0}\cdot A}{l_{\text{Luft}}}} $

mit

  • der Anzahl $ N $ der Spulenwindungen
  • dem magnetischen Widerstand $ R_{m} $, wobei für die Näherung der magnetische Widerstand des Kerns gegenüber demjenigen des Luftspalts vernachlässigt wird
  • der magnetische Feldkonstante $ \mu _{0} $
  • der Stirnfläche $ A $ des magnetischen Kreises am Luftspalt, durch welche die Feldlinien des magnetischen Feldes hindurchtreten
  • der Summe $ l_{\text{Luft}} $ der Größe beider Luftspalte.

Die (idealisierte) Fläche, die für den magnetischen Kreis zur Verfügung steht, ergibt sich zu

$ A=(x_{0}-|x|)\cdot y_{0}\ =x_{0}\cdot y_{0}-|x|\cdot y_{0} $
$ \Rightarrow {\frac {\mathrm {d} A}{\mathrm {d} |x|}}=\left\{{\begin{matrix}-y_{0},\quad {\text{wenn }}|x|>0\\0,\quad {\text{wenn }}x=0\end{matrix}}\right. $

Dabei ist die Richtung der Auslenkung $ x $ unerheblich, daher die Betragsstriche. Die Größe $ y_{0} $ bezeichnet die Tiefe.

Einsetzen liefert

$ {\frac {\mathrm {d} L}{\mathrm {d} |x|}}=N^{2}\cdot {\frac {\mu _{0}}{l_{\text{Luft}}}}\cdot {\frac {\mathrm {d} A}{\mathrm {d} |x|}}=-N^{2}\cdot \mu _{0}\cdot {\frac {y_{0}}{l_{\text{Luft}}}} $

so dass auf den beweglichen Teil des ausgelenkten Kerns eine Kraft

$ \Rightarrow F_{\mathrm {R} }=-{\frac {1}{2}}\cdot (I\cdot N)^{2}\cdot \mu _{0}\cdot {\frac {y_{0}}{l_{\text{Luft}}}} $

wirkt, die ihn zur Mitte hin zieht. Diese ist unabhängig von der Größe der Auslenkung, außer wenn die obige Ableitung $ {\frac {\mathrm {d} A}{\mathrm {d} |x|}}=-y_{0} $ ihre Gültigkeit verliert. Dies ist der Fall, wenn $ |x| $ zu groß wird.

Veränderlicher Luftspalt

Zugkraft im Luftspalt

Analog zu oben gilt

$ F_{\mathrm {R} }={\frac {\mathrm {d} W}{\mathrm {d} l_{\text{Luft}}}}={\frac {1}{2}}\cdot I^{2}\cdot {\frac {\mathrm {d} L(l_{\text{Luft}})}{\mathrm {d} l_{\text{Luft}}}} $.

Für die Induktivität gilt auch hier näherungsweise

$ L\approx {\frac {N^{2}}{R_{m,{\text{Luft}}}}}=N^{2}\cdot A\cdot \mu _{0}\cdot {\frac {1}{l_{\text{Luft}}}} $.

Mit der Potenzregel erhält man

$ {\frac {\mathrm {d} L}{\mathrm {d} l_{\text{Luft}}}}=N^{2}\cdot A\cdot \mu _{0}\cdot {\frac {-1}{{l_{\text{Luft}}}^{2}}} $.

Einsetzen in die Formel für $ F_{\mathrm {R} } $ liefert das Ergebnis:

$ F_{\mathrm {R} }=-{\frac {1}{2}}\cdot I^{2}\cdot N^{2}\cdot A\cdot \mu _{0}\cdot {\frac {1}{{l_{\text{Luft}}}^{2}}} $.

Da bei einer Verkleinerung des Luftspalts die Induktivität steigt, wirkt die Reluktanzkraft in diese Richtung. Die Kraft nimmt mit der Breite des Luftspalts ab. Das Maximum der Reluktanzkraft ist erreicht, wenn der Luftspalt gegen null geht. Allerdings gilt bei sehr kleinem Luftspalt die Näherungsformel für die Induktivität nicht mehr, da dann der magnetische Widerstand des Kerns nicht mehr vernachlässigt werden kann.

Literatur

  • Hans-Dieter Stölting, Eberhard Kallenbach (Hrsg.): Handbuch Elektrische Kleinantriebe. 3. Auflage. Hanser, ISBN 3-446-40019-2, S. 460.

Weblinks