Strouhal-Zahl: Unterschied zwischen den Versionen

Strouhal-Zahl: Unterschied zwischen den Versionen

imported>Alturand
 
imported>Tommes
K (Vorlage wurde verschoben)
 
Zeile 1: Zeile 1:
{{Infobox Kennzahl
{{Infobox Physikalische Kennzahl
| Name              =
| Name              =
| Formelzeichen    = <math>\mathit{Sr}</math>
| Formelzeichen    = <math>\mathit{Sr}</math>
Zeile 31: Zeile 31:


== Beispiele ==
== Beispiele ==
Bläst Wind mit einer Geschwindigkeit von 20&nbsp;m/s um ein Kabel mit einem Durchmesser von 0,01&nbsp;m, so hört man das ''Singen der Drähte'', auch [[Äolstöne]] genannt, mit einer Frequenz von 0,21 · 20/0,01&nbsp;Hz = 420&nbsp;Hz.
Bläst Wind mit einer Geschwindigkeit von 20&nbsp;m/s um ein Kabel mit einem Durchmesser von 0,01&nbsp;m, so hört man das ''Singen der Drähte'', auch [[Äolstöne]] genannt, mit einer Frequenz von 0,21&nbsp;·&nbsp;20&nbsp;m/s&nbsp;:&nbsp;0,01&nbsp;m = 420&nbsp;Hz.


[[Fliegerbombe]]n schlagen aus einer Höhe von 2000&nbsp;m mit einer Geschwindigkeit von ca.&nbsp;200&nbsp;m/s ein. Bei einem Durchmesser von einigen Dezimetern erzeugen sie einen hohen Pfeifton, dessen Tonhöhe zusätzlich durch den [[Doppler-Effekt]] moduliert wird.
[[Fliegerbombe]]n schlagen aus einer Höhe von 2000&nbsp;m mit einer Geschwindigkeit von ca.&nbsp;200&nbsp;m/s ein. Bei einem Durchmesser von einigen Dezimetern erzeugen sie einen hohen Pfeifton, dessen Tonhöhe zusätzlich durch den [[Doppler-Effekt]] moduliert wird.


== Weblinks ==
== Weblinks ==
* [http://www.enseeiht.fr/hmf/travaux/CD0102/travaux/optmfn/gpfmho/01-02/grp6/pages/strouhal.htm Messwerte für Sr(R)] (englisch)
* [https://hmf.enseeiht.fr/travaux/CD0102/travaux/optmfn/gpfmho/01-02/grp6/pages/strouhal.htm Messwerte für Sr(R)] (englisch)
* [http://www.deutschestextarchiv.de/book/view/strouhal_tonerregung_1878?p=14 Strouhal, Vincenz: Ueber eine besondere Art der Tonerregung. In: Annalen der Physik und Chemie. Leipzig, 1878. NF. Bd. V, H. 10, S. 216-251] (Link Deutsches Textarchiv).
* [http://www.deutschestextarchiv.de/book/view/strouhal_tonerregung_1878?p=14 Strouhal, Vincenz: Ueber eine besondere Art der Tonerregung. In: Annalen der Physik und Chemie. Leipzig, 1878. NF. Bd. V, H. 10, S. 216-251] (Link Deutsches Textarchiv).


[[Kategorie:Kennzahl (Strömungsmechanik)]]
[[Kategorie:Kennzahl (Strömungsmechanik)]]

Aktuelle Version vom 7. April 2019, 12:22 Uhr

Physikalische Kennzahl
Name Strouhal-Zahl
Formelzeichen $ {\mathit {Sr}} $
Dimension dimensionslos
Definition $ {\mathit {Sr}}={\frac {f\cdot L}{v}} $
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): f Wirbelablösefrequenz
$ L $ charakteristische Länge
$ v $ Strömungsgeschwindigkeit
Benannt nach Vincent Strouhal
Anwendungsbereich oszillierende Strömungen

Die Strouhal-Zahl $ {\mathit {Sr}} $ ist eine in der Strömungsmechanik verwendete dimensionslose Kennzahl. Bei instationären Strömungsvorgängen kann aus ihr die Ablösefrequenz von Wirbeln bestimmt werden, wie sie beispielsweise bei einer Kármánschen Wirbelstraße zu beobachten sind. Sie ist nach dem tschechischen Physiker Vincent Strouhal (1850–1922) benannt, der sie 1878 erstmals benutzte.

Definition und Werte

Kármánsche Wirbelstraße hinter einem umströmten Zylinder

Die Strouhal-Zahl ist definiert als:

$ {\mathit {Sr}}={\frac {f\cdot L}{v}} $

mit

  • Wirbelablösefrequenz $ f $
  • Größe $ L $ des umströmten Hindernisses, z. B. Durchmesser eines Zylinders
  • Strömungsgeschwindigkeit $ v $.
Abhängigkeit der Strouhal-Zahl von der Reynolds-Zahl für einen langen Zylinder

Das Diagramm zeigt die Abhängigkeit der Strouhal-Zahl von der Reynolds-Zahl bei einem umströmten Zylinder. Für die meisten praktischen Anwendungen gilt die Näherung:

$ {\mathit {Sr}}\approx 0{,}21. $

Damit kann die Frequenz der Wirbelablösung berechnet werden:

$ f={\frac {{\mathit {Sr}}\cdot v}{L}} $

Beispiele

Bläst Wind mit einer Geschwindigkeit von 20 m/s um ein Kabel mit einem Durchmesser von 0,01 m, so hört man das Singen der Drähte, auch Äolstöne genannt, mit einer Frequenz von 0,21 · 20 m/s : 0,01 m = 420 Hz.

Fliegerbomben schlagen aus einer Höhe von 2000 m mit einer Geschwindigkeit von ca. 200 m/s ein. Bei einem Durchmesser von einigen Dezimetern erzeugen sie einen hohen Pfeifton, dessen Tonhöhe zusätzlich durch den Doppler-Effekt moduliert wird.

Weblinks