Der Doppler-Effekt (selten Doppler-Fizeau-Effekt) ist die zeitliche Stauchung bzw. Dehnung eines Signals bei Veränderungen des Abstands zwischen Sender und Empfänger während der Dauer des Signals. Ursache ist die Veränderung der Laufzeit. Dieser rein kinematische Effekt tritt bei allen Signalen auf, die sich mit einer bestimmten Geschwindigkeit, meist Lichtgeschwindigkeit oder Schallgeschwindigkeit, ausbreiten.[1] Breitet sich das Signal in einem Medium aus, so ist dessen Bewegungszustand zu berücksichtigen.
Bei periodischen Signalen erhöht bzw. vermindert sich die beobachtete Frequenz. Das betrifft sowohl Tonhöhen als auch Modulationsfrequenzen, z. B. den Wechsel der Töne eines Martinhorns („tatü…taataa“). Bei geringen Geschwindigkeiten im Verhältnis zur Ausbreitungsgeschwindigkeit gibt dieses Verhältnis zugleich die relative Frequenzänderung
Der Doppler-Effekt wurde bekannt durch Christian Doppler, der im Jahre 1842 Astronomen davon zu überzeugen versuchte, dass dieser Effekt die Ursache dafür sei, dass bei Doppelsternen zwischen den beiden Partnersternen Farbunterschiede erkennbar sind. Nach seiner Meinung kreisen diese Sterne so schnell umeinander, dass die Farbe des gerade vom Beobachter hinweg bewegten Sterns mit einer Rotverschiebung wahrgenommen wird, während die Farbe des zulaufenden Sterns in den blauen Bereich des Spektrums verschoben ist. Dieser Effekt konnte nach dem Tode Dopplers tatsächlich durch die Vermessung von Spektrallinien nachgewiesen werden. Er ist aber zu gering, um wahrnehmbare Farbunterschiede zu erklären. Die tatsächliche Ursache für mit dem Auge erkennbare Farbunterschiede zwischen Sternen sind deren Temperaturunterschiede.[2]
Zur Erklärung des Effektes stellte Doppler ein Gedankenexperiment mit der Laufzeit von Wasserwellen an, die im Minutentakt von einem fahrenden Boot aus erzeugt werden. Daraus leitete er auch eine mathematische Beschreibung ab. Ein Verdienst von Doppler ist die Erkenntnis, dass die Endlichkeit der Lichtgeschwindigkeit auch eine Änderung der Wellenlänge des von bewegten Quellen eintreffenden Lichts bewirken muss. Im französischen Sprachraum wird dies oft Armand Fizeau (1848) zugesprochen.[3]
Die Endlichkeit der Geschwindigkeit der Lichtausbreitung war bereits 180 Jahre zuvor von Ole Rømer gedeutet worden. Rømer interessierte sich für die Eignung der Jupitermonde als Zeitgeber zur Lösung des Längengradproblems. Die Verfinsterungen des Jupitermondes Io waren mit einer Frequenz von 1/1,8d bekannt, die gut als Zeitgeber geeignet wären. Allerdings stellte Rømer fest, dass sich diese Frequenz verringert, wenn sich die Erde auf ihrer Umlaufbahn um die Sonne gerade vom Jupiter wegbewegt. Mit
Für die Schallwellen hat der Naturforscher Christoph Buys Ballot im Jahre 1845 den Doppler-Effekt nachgewiesen. Er postierte dazu mehrere Trompeter sowohl auf einem fahrenden Eisenbahnzug als auch neben der Bahnstrecke. Im Vorbeifahren sollte jeweils einer von ihnen ein G spielen und die anderen die gehörte Tonhöhe bestimmen. Es ergab sich eine Verschiebung von einem Halbton,[2] entsprechend einer Geschwindigkeit von 70 km/h.
Erst zwanzig Jahre später fand William Huggins die vorhergesagte spektroskopische Doppler-Verschiebung im Licht von Sternen. Er zeigte, dass Sirius sich stetig von uns entfernt.
Ein weiteres Jahrhundert später wurde durch Radar-Messungen zwischen Erde und Venus die Genauigkeit der Astronomischen Einheit von 10−4 (aus der Horizontalparallaxe von Eros) verbessert auf zunächst 10−6 anhand von Entfernungsmessungen in den unteren Konjunktionen der Jahre 1959 und 1961 (z. B. beim JPL[5] durch Amplitudenmodulation mit bis zu 32 Hz), dann auf 10−8 durch Doppler-Messungen auf den Trägerfrequenzen über mehrere Monate vor und nach den unteren Konjunktionen der Jahre 1964 und 1966. Die Ergebnisse wurden wie 300 Jahre zuvor als Laufzeit angegeben, da der Wert der Lichtgeschwindigkeit damals erst auf sechs Stellen bekannt war.[6]
Für den Nachweis der Periheldrehung des Merkur reichten Doppler-Messungen der Jahre 1964 bis 1966[6] – mit optischen Methoden waren anderthalb Jahrhunderte nötig.
Bei der Erklärung des akustischen Doppler-Effekts ist zu unterscheiden, ob sich die Schallquelle, der Beobachter, oder beide relativ zum Medium (der ruhenden Luft) bewegen.
Als Beispiel soll angenommen werden, dass das Martinhorn des Krankenwagens Schallwellen mit einer Frequenz von 1000 Hz aussendet. Dieses bedeutet, dass genau 1/1000 Sekunden nach dem ersten Wellenberg ein zweiter Wellenberg nachfolgt. Die Wellen breiten sich mit der Schallgeschwindigkeit
Solange der Krankenwagen steht, ist die Wellenlänge
Für einen Beobachter an der Straße kommen diese Wellenberge zwar je nach Entfernung etwas zeitverzögert an. Die Zeit zwischen zwei Wellenbergen ändert sich jedoch nicht. Die Grundfrequenz
Die Situation ändert sich, wenn der Krankenwagen mit der Geschwindigkeit
Die Indizes
Dadurch erscheint dem Beobachter die Frequenz (also die Tonhöhe) des Martinhorns höher (
Quantitativ erhält man die Frequenzänderung einfach durch Einsetzen der Beziehung
(1)
| ||
Dabei bedeuten
Wenn der Krankenwagen am Beobachter vorbeigefahren ist, verhält es sich sinngemäß umgekehrt: der Abstand zwischen den Wellenbergen (Wellenlänge) vergrößert sich, und der Beobachter hört einen tieferen Ton. Rechnerisch gilt obige Formel genauso, man muss nur für
Die beschriebenen Bewegungen der Signalquelle direkt auf den Beobachter zu oder direkt von ihm weg sind Spezialfälle. Bewegt sich die Signalquelle beliebig im Raum mit der Geschwindigkeit
angegeben werden.
Auch bei ruhender Schallquelle
bzw.
(2)
| ||
Auch hier ergibt sich wieder der Fall eines sich entfernenden Beobachters durch Einsetzen einer negativen Geschwindigkeit.
Für eine beliebige Bewegung des Beobachters
wobei
Wie man sieht, sind die Gleichungen (1) und (2) nicht identisch (nur im Grenzfall
Durch Kombination der Gleichungen (1) und (2) kann man eine Gleichung herleiten, welche die für den Beobachter wahrgenommene Frequenz
Sender und Empfänger bewegen sich aufeinander zu:
Sender und Empfänger bewegen sich voneinander weg:
Dabei ist
Ebenfalls aus den oberen Gleichungen lässt sich die wahrgenommene Frequenz ableiten wenn die Welle eines ruhenden Senders
Anwendung findet diese Gleichung häufig in der akustischen oder optischen Messtechnik zur Messung von Bewegungen, z. B. Laser-Doppler-Anemometrie. Speziell in der Optik kann für
aus Beleuchtungsrichtung
Allgemein lässt sich der Frequenzunterschied schreiben als:
Dabei ist
Die Formeln wurden unter der Annahme abgeleitet, dass sich Quelle und Beobachter direkt aufeinander zubewegen. In realen Fällen fährt z. B. der Krankenwagen in einem bestimmten Mindestabstand am Beobachter vorbei. Daher ändert sich der Abstand zwischen Quelle und Beobachter nicht gleichmäßig, und deswegen ist – besonders unmittelbar vor und nach dem Vorbeifahren – ein kontinuierlicher Übergang der Tonhöhe von höher zu tiefer zu hören.
Elektromagnetische Wellen breiten sich auch im Vakuum, also ohne Medium aus. Wenn sich der Sender der Wellen relativ zum Empfänger bewegt, tritt auch in diesem Fall eine Verschiebung der Frequenz auf. Dieser Relativistische Doppler-Effekt ist darauf zurückzuführen, dass die Wellen sich mit endlicher Geschwindigkeit, nämlich der Lichtgeschwindigkeit ausbreiten. Man kann ihn als geometrischen Effekt der Raumzeit auffassen.[7]
Im Vakuum (Optischer Doppler-Effekt) hängt die beobachtete Frequenzänderung nur von der relativen Geschwindigkeit von Quelle und Beobachter ab; ob sich dabei die Quelle, der Beobachter oder beide bewegen, hat keinen Einfluss auf die Höhe der Frequenzänderung.
Aufgrund des Relativitätsprinzips darf sich jeder Beobachter als ruhend betrachten. Allerdings muss er dann bei der Berechnung des Doppler-Effekts zusätzlich zu obigen Betrachtungen auch noch die Zeitdilatation der relativ zum Beobachter bewegten Quelle berücksichtigen. Somit erhält man für den relativistischen Doppler-Effekt:[8]
Bewegt sich ein Objekt zu einem gewissen Zeitpunkt quer (was "quer" bedeutet, siehe die nächsten beiden Abschnitte) zum Beobachter, so kann man die Änderung des Abstandes zu diesem Zeitpunkt vernachlässigen; dementsprechend würde man hier auch keinen Doppler-Effekt erwarten. Jedoch besagt die Relativitätstheorie, dass jedes Objekt aufgrund seiner Bewegung einer Zeitdilatation unterliegt, aufgrund der die Frequenz ebenfalls verringert wird. Diesen Effekt bezeichnet man als transversalen Doppler-Effekt. Die Formel hierfür lautet
wobei
Der transversale Doppler-Effekt kann bei nicht-relativistischen Geschwindigkeiten (also Geschwindigkeiten weit unter der Lichtgeschwindigkeit) allerdings vernachlässigt werden.
Der Doppler-Effekt lässt sich ganz allgemein abhängig vom Beobachtungswinkel angeben. Die Frequenzänderung für einen beliebigen Beobachtungswinkel
Wenn man für den Winkel
Aufgrund der endlichen Laufzeit zwischen Quelle und Empfänger unterscheidet sich der Beobachtungswinkel
Besonders anschaulich wird der Unterschied zwischen dem Beobachtungswinkel
Wobei wir noch folgende Beziehungen verwendet haben:
Nebenbei bemerkt: Der transversale Dopplereffekt und insbesondere dieser seitlich driftende Lichtstrahl ist der Schlüssel zu einer anschaulichen und in sich konsistenten Beschreibung der speziellen Relativitätstheorie.[9] Entsprechend obiger Formel, für den Fall
zugeführt werden. Weiß man nun, dass
Auch wenn die zu beobachtenden Auswirkungen von Doppler-Effekt und astronomischer Rotverschiebung identisch sind (Verminderung der beobachteten Frequenz der elektromagnetischen Strahlung eines Sterns oder einer Galaxie), so dürfen beide trotzdem nicht verwechselt werden, da sie gänzlich andere Ursachen haben.
Der relativistische Doppler-Effekt ist nur dann Hauptursache für die Frequenzänderung, wenn sich Sender und Empfänger wie oben beschrieben durch die Raumzeit bewegen und ihr Abstand so gering ist, dass die Ausdehnung des zwischen ihnen liegenden Raumes im Verhältnis gering ist. Ab einer bestimmten Entfernung überwiegt bei weitem jener Anteil, der durch die Ausdehnung der Raumzeit selbst hervorgerufen wird, so dass der Anteil des hier diskutierten Doppler-Effekts gänzlich vernachlässigt werden kann.
Radialgeschwindigkeiten sind durch den Doppler-Effekt messbar, wenn der Empfänger die Frequenz des Senders genügend genau kennt, insbesondere bei Echos von akustischen und elektromagnetischen Signalen.
Scharfe Spektrallinien erlauben eine entsprechend hohe Auflösung der Doppler-Verschiebung. Berühmt ist der Nachweis der Doppler-Verschiebung im Gravitationsfeld (Pound-Rebka-Experiment). Beispiele in der Astrophysik sind die Rotationskurven von Galaxien, spektroskopische Doppelsterne, die Helioseismologie und der Nachweis von Exoplaneten.
In der Quantenoptik wird die Dopplerverschiebung bei der Laserkühlung von Atomgasen genutzt, um Temperaturen nahe dem absoluten Nullpunkt zu erreichen.
Bei der Mößbauer-Spektroskopie wird der Doppler-Effekt einer bewegten Gammastrahlungsquelle verwendet, um die Energie der Photonen dieser Quelle minimal zu verändern. Hierdurch können diese Photonen in Wechselwirkung mit den Kernhyperfeinniveaus eines entsprechenden Absorbers treten.
Beim Doppler-Radar berechnet man die Annäherungsgeschwindigkeit eines Objekts aus der gemessenen Frequenzänderung zwischen gesendetem und reflektiertem Signal. Die Besonderheit bei einem aktiven Radargerät ist jedoch, dass der Doppler-Effekt zweimal auftreten kann, auf dem Hin- und auf dem Rückweg. Ein Radarwarngerät, das die Signale des Hinwegs empfängt, misst eine Frequenz, die in Abhängigkeit von der Relativgeschwindigkeit variiert. Diese registrierte Frequenz wird von ihm reflektiert. Das Radargerät registriert die bereits Doppler-verschobenen Frequenzen wiederum in Abhängigkeit von der dann bestehenden Relativgeschwindigkeit. Im Fall eines unbeschleunigten Radargeräts tritt eine exakt zweifache Doppler-Verschiebung auf.
In der Medizin wird der akustische Doppler-Effekt bei Ultraschalluntersuchungen genutzt, um die Blutstromgeschwindigkeit darzustellen und zu messen. Dies hat sich als außerordentlich hilfreich erwiesen.
Es gibt:
Für die berührungslose Messung der Geschwindigkeitsverteilung von Fluiden (Flüssigkeiten und Gase) wird die Laser-Doppler-Anemometrie (LDA) angewandt. Sie beruht auf dem optischen Doppler-Effekt an streuenden Partikeln in der Strömung. In gleicher Weise dient ein Vibrometer der Messung der Schnelle vibrierender Oberflächen.
Während der Segmentierung von sequentiell segmentierenden Wirbeltier-Embryonen laufen Wellen von Genexpression durch das paraxiale Mesoderm, das Gewebe, aus dem die Vorläufer der Wirbelkörper (Somiten) geformt werden. Mit jeder Welle, die das anteriore Ende des präsomitischen Mesoderms erreicht, wird ein neuer Somit gebildet. In Zebrabärblingen wurde gezeigt, dass die Verkürzung des paraxialen Mesoderms während der Segmentierung einen Doppler-Effekt verursacht, da sich das anteriore Ende des Gewebes in die Wellen hineinbewegt. Dieser Doppler-Effekt trägt zur Geschwindigkeit der Segmentierung bei.[10]
Ein ruhender Beobachter hört eine Schallquelle, die sich genau auf ihn zubewegt, mit der Frequenz
Sind die Koordinaten der bewegten Signalquelle bekannt, kann man aus dem Frequenzverlauf den eigenen Standort ableiten (siehe z. B. Transit (Satellitensystem)).
Die Tonbeispiele geben die Tonhöhen, die ein ruhender Beobachter hört, wenn eine Signalquelle an ihm vorbeifliegt. Sie vernachlässigen den Effekt, dass die sich entfernende Quelle länger zu hören ist als die sich nähernde:
Erhöht sich die relative Geschwindigkeit, verschieben sich die Frequenzen:
Bei der Planung der Weltraummission Cassini-Huygens war nicht bedacht worden, dass der Funkverkehr zwischen den beiden Teilsystemen Cassini und Huygens durch den Doppler-Effekt einer Frequenzverschiebung unterliegt. Simulierende Tests wurden erst während der Reise durchgeführt, zu spät, um die Ursache, eine zu steif parametrisierte Phasenregelschleife, zu korrigieren. Diverse Maßnahmen im Umfeld des Fehlers konnten den erwarteten Datenverlust von 90 % auf 50 % senken. Zusätzlich wurde daher die Flugbahn der Mission verändert, um Datenverluste durch diesen Fehler ganz zu vermeiden.[11]