Halbachsen der Ellipse: Unterschied zwischen den Versionen

Halbachsen der Ellipse: Unterschied zwischen den Versionen

imported>Icodense99
K (Änderungen von 2003:E9:DBC0:5C01:1CA3:935A:FAA0:8BCC (Diskussion) auf die letzte Version von PerfektesChaos zur…)
 
imported>Nillurcheier
(Welcheritis geändert)
 
Zeile 1: Zeile 1:
Mit '''Halbachsen''' werden die charakteristischen [[Radius|Radien]] einer [[Ellipse]] bezeichnet. Es wird zwischen der großen und der kleinen Halbachse unterschieden.
[[Datei:Ellipse parameters.svg|mini|300px|hochkant=1.8|Parameter einer Ellipse:
 
Die '''große Halbachse''' ist die halbe Länge des größten Durchmessers einer [[Ellipse]], der auch '''Hauptachse''' genannt wird. Der kürzeste halbe Durchmesser, der genau im [[Rechter Winkel|Winkel von 90°]] dazu steht, wird '''kleine Halbachse''' genannt. Der [[Kreis (Geometrie)|Kreis]] ist eine spezielle Ellipse, bei der diese beide Halbachsen gleich lang sind, in diesem Fall entspricht die Halbachse dem [[Radius]] des Kreises.
 
[[Datei:Ellipse parameters.png|mini|hochkant=1.8|Parameter einer Ellipse:
{| class="wikitable" style="font-size:small;"
{| class="wikitable" style="font-size:small;"
|-
|-
Zeile 17: Zeile 13:
|}
|}
]]
]]
Als '''Halbachsen''' werden die beiden charakteristischen [[Radius|Radien]] einer [[Ellipse]] bezeichnet:
* Die '''große Halbachse''' ist die Hälfte des größten Durchmessers einer Ellipse, der auch '''Hauptachse''' genannt wird.
* Die '''kleine Halbachse''' ist die Hälfte des kürzesten Durchmessers ('''Nebenachse''') und steht genau im [[Rechter Winkel|Winkel von 90°]] zur großen Halbachse.
Der [[Kreis (Geometrie)|Kreis]] ist eine spezielle Ellipse, bei der diese beide Halbachsen gleich lang sind, in diesem Fall entsprechen beide Halbachsen jeweils dem Radius des Kreises.


Die Hauptachse (der größte Durchmesser, hier <math> \overline{S_1 S_2}</math>) und die '''Nebenachse''' (der kleinste Durchmesser, hier <math> \overline{S_3 S_4}</math>) werden gemeinsam auch als die '''Hauptachsen''' der Ellipse bezeichnet. Haupt- und Nebenachse sind [[konjugierte Durchmesser]]. Diese Beziehung bleibt auch bei „schräger“ Betrachtungsweise der Ellipse erhalten, was zur geometrischen Konstruktion von anderen konjugierten Durchmessern genutzt werden kann.
Die Hauptachse (der größte Durchmesser, hier <math> \overline{S_1 S_2}</math>) und die Nebenachse (der kleinste Durchmesser, hier <math> \overline{S_3 S_4}</math>) werden gemeinsam auch als die '''Hauptachsen''' der Ellipse bezeichnet. Haupt- und Nebenachse sind [[konjugierte Durchmesser]]. Diese Beziehung bleibt auch bei „schräger“ Betrachtungsweise der Ellipse erhalten, was zur geometrischen Konstruktion von anderen konjugierten Durchmessern genutzt werden kann.


== Astronomie ==
== Astronomie ==
Zeile 28: Zeile 28:
Nach dem dritten [[Keplersche Gesetze|Gesetz von Kepler]] ist die [[Umlaufzeit]] ''U'' einer Ellipsenbahn mit ''a'' gekoppelt (<math>U^2/a^3=\mathrm{const}</math>). Die Konstante hängt mit der [[Masse (Physik)|Masse]] des Zentralkörpers zusammen – in einem [[Planetensystem]] also mit der Masse des [[Zentralstern]]s.
Nach dem dritten [[Keplersche Gesetze|Gesetz von Kepler]] ist die [[Umlaufzeit]] ''U'' einer Ellipsenbahn mit ''a'' gekoppelt (<math>U^2/a^3=\mathrm{const}</math>). Die Konstante hängt mit der [[Masse (Physik)|Masse]] des Zentralkörpers zusammen – in einem [[Planetensystem]] also mit der Masse des [[Zentralstern]]s.


Die beiden Hauptscheitel nennt man ''[[Apsiden]]'', die Hauptachse ist die ''[[Apsidenlinie]]'': Wenn ein Körper im Brennpunkt F<sub>1</sub> liegt und ein kleinerer Körper ihn auf einer Ellipse umkreist, so spricht man beim kürzesten Abstand (<math>\overline{S_1 F_1}</math> = ''a''−''e'') von der ''[[Periapsis]]'' und beim längsten Abstand (<math> \overline{S_2 F_1}</math> = ''a''+''e'') von der ''Apoapsis'' (''[[Perihel]], Aphel'' bei der Sonne).
Die beiden Hauptscheitel nennt man ''[[Apsis (Astronomie)|Apsiden]]'', die Hauptachse ist die ''Apsidenlinie'': Wenn ein Körper im Brennpunkt F<sub>1</sub> liegt und ein kleinerer Körper ihn auf einer Ellipse umkreist, so spricht man beim kürzesten Abstand (<math>\overline{S_1 F_1}</math> = ''a''−''e'') von der ''Periapsis'' und beim längsten Abstand (<math> \overline{S_2 F_1}</math> = ''a''+''e'') von der ''Apoapsis'' (''Perihel, Aphel'' bei der Sonne).


In der Periapsis (Perizentrum, gravizentrumsnaher Hauptscheitel) ist die [[Orbitalgeschwindigkeit (Astronomie)|Orbitalgeschwindigkeit]] maximal, im Apozentrum minimal.
In der Periapsis (Perizentrum, gravizentrumsnaher Hauptscheitel) ist die [[Orbitalgeschwindigkeit (Astronomie)|Orbitalgeschwindigkeit]] maximal, im Apozentrum minimal.


Die tatsächliche mittlere Entfernung ist neben der großen Halbachse auch von der numerischen Exzentrizität <math>\varepsilon=e/a</math> abhängig und beträgt
Die tatsächliche mittlere Entfernung ist neben der großen Halbachse auch von der [[Exzentrizität (Astronomie)|numerischen Exzentrizität]] <math>\varepsilon=e/a</math> abhängig und beträgt


: <math>a \cdot \left(1 + \frac{\varepsilon^2}{2}\right)</math>
: <math>a \cdot \left(1 + \frac{\varepsilon^2}{2}\right)</math>
Zeile 38: Zeile 38:
== Geodäsie ==
== Geodäsie ==


In der [[Geodäsie]] sind die Achsen der sogenannten [[Fehlerellipse]]n ein wichtiges Darstellungsmittel der mittleren beziehungsweise maximalen/minimalen Punktfehler. Bei der [[Ausgleichsrechnung|Ausgleichung]] von [[Netz (Geodäsie)|geodätischen Netzen]] lässt sich die [[Genauigkeit]], mit der die einzelnen [[Vermessungspunkt]]e des Netzes bestimmt sind, als [[Fehlerellipse]] darstellen.<ref>Erwin Groten: ''Zur Definition des mittleren Punktfehlers''. In: ''Zeitschrift für Vermessungswesen'' (ZfV), 11/1969, S. 455–457.</ref>
In der [[Geodäsie]] sind die Achsen der sogenannten [[Fehlerellipse]]n ein wichtiges Darstellungsmittel der mittleren beziehungsweise maximalen/minimalen Punktfehler. Bei der [[Ausgleichsrechnung|Ausgleichung]] von [[Netz (Geodäsie)|geodätischen Netzen]] lässt sich die [[Genauigkeit]], mit der die einzelnen [[Vermessungspunkt]]e des Netzes bestimmt sind, als Fehlerellipse darstellen.<ref>Erwin Groten: ''Zur Definition des mittleren Punktfehlers''. In: ''Zeitschrift für Vermessungswesen'' (ZfV), 11/1969, S. 455–457.</ref>


== Einzelnachweise ==
== Einzelnachweise ==

Aktuelle Version vom 1. Juni 2021, 13:58 Uhr

Parameter einer Ellipse:
S1,S2 Hauptscheitel S3,S4 Nebenscheitel
$ {\overline {S_{1}S_{2}}} $ Hauptachse $ {\overline {S_{3}S_{4}}} $ Nebenachse
a Große Halbachse b Kleine Halbachse
F1,F2 Brennpunkt (Ellipse) e lin. Exzentrizität
M Mittelpunkt p Parameter (semi-latus rectum)

Als Halbachsen werden die beiden charakteristischen Radien einer Ellipse bezeichnet:

  • Die große Halbachse ist die Hälfte des größten Durchmessers einer Ellipse, der auch Hauptachse genannt wird.
  • Die kleine Halbachse ist die Hälfte des kürzesten Durchmessers (Nebenachse) und steht genau im Winkel von 90° zur großen Halbachse.

Der Kreis ist eine spezielle Ellipse, bei der diese beide Halbachsen gleich lang sind, in diesem Fall entsprechen beide Halbachsen jeweils dem Radius des Kreises.

Die Hauptachse (der größte Durchmesser, hier $ {\overline {S_{1}S_{2}}} $) und die Nebenachse (der kleinste Durchmesser, hier $ {\overline {S_{3}S_{4}}} $) werden gemeinsam auch als die Hauptachsen der Ellipse bezeichnet. Haupt- und Nebenachse sind konjugierte Durchmesser. Diese Beziehung bleibt auch bei „schräger“ Betrachtungsweise der Ellipse erhalten, was zur geometrischen Konstruktion von anderen konjugierten Durchmessern genutzt werden kann.

Astronomie

In der Astronomie ist die große Halbachse einer keplerschen Umlaufbahn eines der sechs sogenannten Bahnelemente und wird oft auch ungenau als „mittlere Entfernung“ angegeben und meistens mit a abgekürzt. Sie charakterisiert – zusammen mit der Exzentrizität – die Form von elliptischen Umlaufbahnen verschiedener Himmelskörper.

Solche Körper sind in erster Linie die Planeten und ihre Monde, künstliche Erdsatelliten, die Asteroiden und tausende Doppelsterne.

Nach dem dritten Gesetz von Kepler ist die Umlaufzeit U einer Ellipsenbahn mit a gekoppelt ($ U^{2}/a^{3}=\mathrm {const} $). Die Konstante hängt mit der Masse des Zentralkörpers zusammen – in einem Planetensystem also mit der Masse des Zentralsterns.

Die beiden Hauptscheitel nennt man Apsiden, die Hauptachse ist die Apsidenlinie: Wenn ein Körper im Brennpunkt F1 liegt und ein kleinerer Körper ihn auf einer Ellipse umkreist, so spricht man beim kürzesten Abstand ($ {\overline {S_{1}F_{1}}} $ = ae) von der Periapsis und beim längsten Abstand ($ {\overline {S_{2}F_{1}}} $ = a+e) von der Apoapsis (Perihel, Aphel bei der Sonne).

In der Periapsis (Perizentrum, gravizentrumsnaher Hauptscheitel) ist die Orbitalgeschwindigkeit maximal, im Apozentrum minimal.

Die tatsächliche mittlere Entfernung ist neben der großen Halbachse auch von der numerischen Exzentrizität $ \varepsilon =e/a $ abhängig und beträgt

$ a\cdot \left(1+{\frac {\varepsilon ^{2}}{2}}\right) $

Geodäsie

In der Geodäsie sind die Achsen der sogenannten Fehlerellipsen ein wichtiges Darstellungsmittel der mittleren beziehungsweise maximalen/minimalen Punktfehler. Bei der Ausgleichung von geodätischen Netzen lässt sich die Genauigkeit, mit der die einzelnen Vermessungspunkte des Netzes bestimmt sind, als Fehlerellipse darstellen.[1]

Einzelnachweise

  1. Erwin Groten: Zur Definition des mittleren Punktfehlers. In: Zeitschrift für Vermessungswesen (ZfV), 11/1969, S. 455–457.