imported>ZweiZahn K (ref fix) |
imported>Cepheiden (EN-Angaben ergänzt, WP:ZR) |
||
Zeile 1: | Zeile 1: | ||
Der '''Dexter-Energietransfer''', auch kurz '''Dexter-Transfer''' oder '''Dexter-Prozess''' genannt, ist ein nach [[David L. Dexter]] benannter [[Quantenmechanik|quantenmechanischer]] Mechanismus der Energieübertragung zwischen zwei [[Molekül]]en, der auf einem Austausch von [[Elektron]]en basiert.<ref name="Dexter">{{ | Der '''Dexter-Energietransfer''', auch kurz '''Dexter-Transfer''' oder '''Dexter-Prozess''' genannt, ist ein nach [[David L. Dexter]] benannter [[Quantenmechanik|quantenmechanischer]] Mechanismus der Energieübertragung zwischen zwei [[Molekül]]en, der auf einem Austausch von [[Elektron]]en basiert.<ref name="Dexter">{{Literatur |Autor = D. L. Dexter |Titel = A Theory of Sensitized Luminescence in Solids |Sammelwerk = The Journal of Chemical Physics |Band = 21 |Datum = 1953-05-01 |Nummer = 5 |Seiten = 836–850 |DOI= 10.1063/1.1699044}}</ref> Der Dexter-Energietransfer spielt unter anderem beim [[Lichtsammelkomplex]] der [[Photosynthese]]<ref>{{Literatur |Autor = Philip D. Laible, Robert S. Knox, Thomas G. Owens |Titel = Detailed Balance in Förster−Dexter Excitation Transfer and Its Application to Photosynthesis |Sammelwerk = The Journal of Physical Chemistry B |Band = 102 |Datum = 1998-02-26 |Nummer = 9 |Seiten = 1641–1648 |DOI= 10.1021/jp9730104}}</ref> und in [[Organische Chemie|organischen]] [[Halbleiter]]n für [[Laser]] oder [[LED]]s<ref name="isbn0-07-159675-5">{{Literatur |Autor=T. Woggon ''et al.'' |Hrsg=Shinar, Joseph; Shinar, Ruth |Titel=Organic Electronics in Sensors and Biotechnology (Mc-Graw-Hill Biophotonics Series) |Verlag=McGraw-Hill Professional |Datum=2009 |ISBN=0-07-159675-5 |Kapitel=Organic Semiconductor Lasers as Integrated Light Sources for Optical sensors |Seiten=265–298}}</ref> eine Rolle. | ||
== Physik == | == Physik == | ||
Der Dexter-Energietransfer ist der dominierende [[Triplett (Quantenmechanik)|Triplett]]-Triplett-Energietransfer. Wichtige Voraussetzungen | Der Dexter-Energietransfer ist der dominierende [[Triplett (Quantenmechanik)|Triplett]]-Triplett-Energietransfer. Wichtige Voraussetzungen sind die Überlappung der Energiefunktionen von Donor- und Akzeptormolekül und ein Abstand von Donor und Akzeptor, der möglichst weniger als 1 [[Nanometer|nm]] beträgt. Der Gesamt[[spin]] des Donor-Akzeptor-Paars bleibt dabei erhalten. | ||
Die Energietransferrate ''k<sub>ET</sub>'' verringert sich exponentiell mit zunehmendem Abstand ''r'' von Donor und Akzeptor: | Die Energietransferrate ''k<sub>ET</sub>'' verringert sich [[exponentiell]] mit zunehmendem Abstand ''r'' von Donor und Akzeptor: | ||
<math> k_{ET} \propto J \cdot e^{- \frac{2r} | :<math>k_{ET} \propto J \cdot e^{- \frac{2r}L}</math>, | ||
mit | |||
* dem [[Überlappungsintegral|Integral ''J'' aus den sich überlappenden Spektren]] von Donor und Akzeptor | |||
* der [[Eindringtiefe]] ''L'' der [[Wellenfunktion]] in die Umgebung ([[Van-der-Waals-Radius]]). | |||
== Literatur == | |||
* {{Gold Book|Dexter (electron exchange) excitation transfer|D01654|Version=2.3.1}} | |||
== Einzelnachweise == | == Einzelnachweise == | ||
<references/> | <references /> | ||
[[Kategorie:Festkörperphysik]] | [[Kategorie:Festkörperphysik]] | ||
[[Kategorie:Spektroskopie]] | [[Kategorie:Spektroskopie]] |
Der Dexter-Energietransfer, auch kurz Dexter-Transfer oder Dexter-Prozess genannt, ist ein nach David L. Dexter benannter quantenmechanischer Mechanismus der Energieübertragung zwischen zwei Molekülen, der auf einem Austausch von Elektronen basiert.[1] Der Dexter-Energietransfer spielt unter anderem beim Lichtsammelkomplex der Photosynthese[2] und in organischen Halbleitern für Laser oder LEDs[3] eine Rolle.
Der Dexter-Energietransfer ist der dominierende Triplett-Triplett-Energietransfer. Wichtige Voraussetzungen sind die Überlappung der Energiefunktionen von Donor- und Akzeptormolekül und ein Abstand von Donor und Akzeptor, der möglichst weniger als 1 nm beträgt. Der Gesamtspin des Donor-Akzeptor-Paars bleibt dabei erhalten.
Die Energietransferrate kET verringert sich exponentiell mit zunehmendem Abstand r von Donor und Akzeptor:
mit