Tokamak: Unterschied zwischen den Versionen

Tokamak: Unterschied zwischen den Versionen

imported>Slowrider
(Änderung 166046400 von 2A02:908:1792:5A00:89FA:48BE:19CB:29F4 rückgängig gemacht;)
 
imported>Geek3
(Formatierung interner Link)
 
Zeile 1: Zeile 1:
[[Datei:The JET magnetic fusion experiment in 1991.jpg|mini|350px|Der [[Joint European Torus]], der derzeit größte Tokamak, aufgenommen 1991.<br /> Das Plasmagefäß mit einem Durchmesser von 6 Metern und einer Höhe von 2,4 Meter ist hinter den orangen Eisenjochen der toroidalen Magnetfeldspulen sowie den Mess-, Heiz- und Kühlsystemen nahezu verborgen. Zum Größenvergleich beachte man die beiden Techniker unten in der Mitte.]]
[[Datei:JET cutaway drawing 1980.jpg|mini|hochkant=1.5|Der [[Joint European Torus]], der derzeit größte Tokamak, in Betrieb seit 1983.<br /> Das Plasmagefäß mit einem Durchmesser von 6 Metern und einer Höhe von 2,4 Meter ist hinter den orangefarbenen Eisenjochen der [[Toroidspule|toroidalen Magnetfeldspulen]] sowie den Mess-, Heiz- und Kühlsystemen nahezu verborgen. Zum Größenvergleich beachte man den Techniker unten links.]]


Ein '''Tokamak''' ist ein Typ eines [[Fusionsreaktor]]s, der auf dem Konzept der [[Fusion mittels magnetischen Einschlusses]] beruht. Ein [[Plasma (Physik)|Plasma]] aus Wasserstoffisotopen wird in einem [[Torus]] von starken [[Magnetismus|Magnetfeldern]] eingeschlossen und auf etwa 100 bis 150 Millionen Grad Celsius erhitzt. Das Ziel ist die Energiegewinnung durch [[Kernfusion]]. In einem Tokamak wird, anders als in einem [[Stellarator]], das Magnetfeld teilweise von einem im Plasma fließenden Strom erzeugt. Die zurzeit leistungsfähigsten Anlagen zur Untersuchung der Fusion basieren auf dem Tokamak-Prinzip.
Der '''Tokamak''' ist ein [[Torus|torusförmiger]] Typ eines [[Fusionsreaktor]]s, der auf der Methode des [[Fusion mittels magnetischen Einschlusses|magnetischen Plasmaeinschlusses]] beruht. Ein [[Plasma (Physik)|Plasma]] aus Wasserstoffisotopen in einem [[torus]]förmigen Gefäß wird durch ein starkes [[Magnetismus|Magnetfeld]] zusammengehalten; dieses Feld wird anders als im [[Stellarator]] teilweise von einem im Plasma fließenden elektrischen Strom erzeugt. Die zurzeit (2019) leistungsfähigsten Anlagen zur Entwicklung der Fusionstechnik basieren auf dem Tokamak-Prinzip.


Das Tokamak-Konzept wurde 1952 von den sowjetischen Physikern [[Andrei Dmitrijewitsch Sacharow|Andrei Sacharow]] und [[Igor Jewgenjewitsch Tamm|Igor Tamm]] am [[Kurtschatow-Institut]]<ref>[https://www.heise.de/newsticker/meldung/Startschuss-fuer-Fusionsreaktor-120106.html Startschuss für Fusionsreaktor] – Artikel bei ''[[heise online]]'', vom 22.&nbsp;November 2006</ref> in [[Moskau]] entwickelt. Bereits in den 1950er Jahren wurden daraufhin die ersten Tokamak-Experimente in der [[Sowjetunion]] durchgeführt. Als erster Tokamak gilt der russische T3 von 1962.<ref name="dpg-physik">[http://www.dpg-physik.de/dpg/gliederung/fv/p/info/magnet.html Deutsche Phys. Gesellschaft, Webseite Stand 31. Oktober 2011: ''Magnetisch eingeschlossene Fusionsplasmen.'']</ref> Das Wort ist eine [[Transliteration]] des [[Russische Sprache|russischen]] '''токамак''', eine Abkürzung für „'''то'''роидальная '''ка'''мера в '''ма'''гнитных '''к'''атушках“ (''toroidalnaja kamera w magnitnych katuschkach'') [{{IPA|'''tɔ'''raidalʲnaia '''ka'''mʲɛra v '''ma'''gnitnɨx '''k'''atuʃkax}}], übersetzt ''Toroidale Kammer in Magnetspulen''. Auch verweist die Silbe '''ток''' auf ''Strom'' und damit den Stromfluss im Plasma, die entscheidende Besonderheit dieses Einschlusskonzepts.
Die Idee des Tokamaks geht auf den deutschen Wissenschaftler [[Ronald Richter]] zurück und wurde später vom sowjetischen Wissenschaftler [[Oleg Alexandrowitsch Lawrentjew]] aufgegriffen (1949) und 1952 von [[Andrei Dmitrijewitsch Sacharow|Andrei Sacharow]] und [[Igor Jewgenjewitsch Tamm|Igor Tamm]] – weiter entwickelt. In den 1950er Jahren wurden in der [[Sowjetunion]] die ersten vorbereitenden Experimente durchgeführt. Als erster Tokamak gilt der sowjetische T3 von 1962.<ref name="dpg-physik">{{Webarchiv|url=http://www.dpg-physik.de/dpg/gliederung/fv/p/info/magnet.html |wayback=20140305174030 |text=Deutsche Phys. Gesellschaft, Webseite Stand 31. Oktober 2011: ''Magnetisch eingeschlossene Fusionsplasmen.'' }}</ref>
 
Das Wort ist die [[Transkription (Schreibung)|Transkription]] des [[Russische Sprache|russischen]] {{lang|ru|токамак}}, einer Abkürzung für „{{lang|ru|'''то'''роидальная '''ка'''мера в '''ма'''гнитных '''к'''атушках}}“ ({{lang|ru-Latn|toroidalnaja kamera w magnitnych katuschkach}} [{{IPA|tɔraiˈdalʲnaia ˈkamʲɛra v magˈnitnɨx kaˈtuʃkax}}]), übersetzt „Toroidale Kammer in Magnetspulen“. Zusätzlich bedeuten die ersten drei Buchstaben {{lang|ru|ток}} übersetzt „Strom“ und verweisen damit auf den Stromfluss im Plasma, die entscheidende Besonderheit dieses Einschlusskonzepts.


== Entwicklungsgeschichte ==
== Entwicklungsgeschichte ==
{{Hauptartikel|Kernfusionsreaktor}}
{{Hauptartikel|Kernfusionsreaktor}}


Gegen Mitte des 20. Jahrhunderts begann die erfolgreiche Entwicklung der zivilen Nutzung der [[Kernenergie]] und auch die [[Kernwaffenexplosion|Testexplosionen]] von [[Wasserstoffbombe]]n verliefen wie geplant. In den 1950er Jahren begannen [[Physiker]], die Möglichkeiten einer Energiegewinnung aus der kontrollierten [[Kernfusion]]sreaktion von [[Wasserstoff]]-[[Isotope]]n zu erforschen. Die Teilchen müssen dazu ein extrem heißes [[Plasma (Physik)|Plasma]] bilden, in dem bei bestimmten Bedingungen (siehe [[Lawson-Kriterium]]) die [[Thermonukleare Reaktion]] selbsterhaltend abläuft.
Gegen Mitte des 20. Jahrhunderts begann die erfolgreiche Entwicklung der zivilen Nutzung der [[Kernenergie]] und auch die [[Kernwaffenexplosion|Testexplosionen]] von [[Wasserstoffbombe]]n verliefen wie geplant. In den 1950er Jahren begannen [[Physiker]], die Möglichkeiten einer Energiegewinnung aus der kontrollierten [[Kernfusion]]sreaktion von [[Wasserstoff]]-[[Isotope]]n zu erforschen. Die Teilchen müssen dazu ein extrem heißes [[Plasma (Physik)|Plasma]] bilden, in dem bei bestimmten Bedingungen (siehe [[Lawson-Kriterium]]) die [[thermonukleare Reaktion]] selbsterhaltend abläuft.


Beim Einschluss des heißen Plasmas in ein klassisches Gefäß würde das Plasma sofort auskühlen. Um einen Abstand von der Gefäßwand herzustellen, ist die [[Lorentzkraft]] geeignet, mit der durch magnetische Felder eine Kraft auf bewegte geladene Teilchen ausgeübt werden kann (siehe auch [[Fusion mittels magnetischen Einschlusses]]).
Beim Einschluss des heißen Plasmas in ein klassisches Gefäß würde das Plasma sofort auskühlen. Um einen Abstand von der Gefäßwand herzustellen, ist die [[Lorentzkraft]] geeignet, mit der durch magnetische Felder eine Kraft auf bewegte geladene Teilchen ausgeübt werden kann (siehe auch [[Fusion mittels magnetischen Einschlusses]]).
Zeile 16: Zeile 18:
[[Datei:Tokamak fields lg.png|mini|Tokamak-Felder]]
[[Datei:Tokamak fields lg.png|mini|Tokamak-Felder]]


Zur Umsetzung dieses Ansatzes schlugen Sacharow und Tamm einen [[Torus]]-förmigen [[Kernfusionsreaktor|Fusionsreaktor]] vor, dessen Ring von Feldspulen umschlossen ist, deren „toroidales“ Magnetfeld das im Torus rotierende Plasma eingeschlossen hält (obere Abbildung).
Zur Umsetzung dieses Ansatzes schlugen Sacharow und Tamm einen [[Torus]]-förmigen [[Kernfusionsreaktor|Fusionsreaktor]] vor, dessen Ring von Feldspulen umschlossen ist, deren [[Toroidspule|„toroidales“ Magnetfeld]] das im Torus rotierende Plasma eingeschlossen hält (obere Abbildung).


Es wurde jedoch auch schon in der Theorie ein Problem erkannt, das sich aus der [[Magnetohydrodynamik]] des Plasmas ergibt, wonach die im inneren Bereich des Torus rotierenden Teilchen mit denen des äußeren Bereichs Verwirbelungen bilden. Um dies zu vermeiden, müssen die Teilchenbahnen zusätzlich eine Drehung innerhalb des Torus-Querschnitts durchführen, die magnetischen [[Feldlinie]]n also spiralförmig verlaufen. Diese Verdrillung der Magnetfeldlinien wird beim Tokamak erreicht, indem man im Plasma selbst einen elektrischen Strom entlang des Ringes fließen lässt. Der Strom erzeugt ein Magnetfeld mit poloidal verlaufenden Feldlinien (mittlere Abbildung). Dieses überlagert sich dem durch die Spulen erzeugten toroidalen Feld, so dass sich der gewünschte spiralförmige Feldverlauf ergibt (untere Abbildung). Die Feldlinien schließen sich nicht nach einem Umlauf um den Ring, sondern bilden konzentrische, mechanisch stabilere Schichten (siehe auch [[Flussfläche]]). Die Elektronen und Ionen bewegen sich unter der [[Lorentzkraft]] auf engen, schraubenartigen Bahnen um je eine Feldlinie.
Es wurde jedoch auch schon in der Theorie ein Problem erkannt, das sich aus der [[Magnetohydrodynamik]] des Plasmas ergibt, wonach die im inneren Bereich des Torus rotierenden Teilchen mit denen des äußeren Bereichs Verwirbelungen bilden. Um dies zu vermeiden, müssen die Teilchenbahnen zusätzlich eine Drehung innerhalb des Torus-Querschnitts durchführen, die magnetischen [[Feldlinie]]n also spiralförmig verlaufen. Diese Verdrillung der Magnetfeldlinien wird beim Tokamak erreicht, indem man im Plasma selbst einen elektrischen Strom entlang des Ringes fließen lässt. Der Strom erzeugt ein Magnetfeld mit poloidal verlaufenden Feldlinien (mittlere Abbildung). Dieses überlagert sich dem durch die Spulen erzeugten [[Toroidspule|toroidalen Feld]], so dass sich der gewünschte spiralförmige Feldverlauf ergibt (untere Abbildung). Die Feldlinien schließen sich nicht nach einem Umlauf um den Ring, sondern bilden konzentrische, mechanisch stabilere Schichten (siehe auch [[Flussfläche]]). Die Elektronen und Ionen bewegen sich unter der [[Lorentzkraft]] auf engen, schraubenartigen Bahnen um je eine Feldlinie.


Die Magnetspulen eines Fusionsreaktors (nicht nur beim Tokamak) müssen für eine wirtschaftliche Netto-Energiegewinnung aus [[Supraleiter]]n bestehen, damit ihr elektrischer Energiebedarf gering bleibt.
Die Magnetspulen eines Fusionsreaktors (nicht nur beim Tokamak) müssen für eine wirtschaftliche Netto-Energiegewinnung aus [[Supraleiter]]n bestehen, damit ihr elektrischer Energiebedarf gering bleibt.


=== Erzeugung des Plasmastroms (Stromtrieb) ===
=== Erzeugung des Plasmastroms (Stromtrieb) ===
Das Plasma kann als Sekundärwicklung eines [[Transformator]]s wirken. Als Primärwicklung wirkt eine zentrale „Poloidal“-Feldspule im Torus-Zentrum, ergänzt durch weitere, koaxial mit dem Torus gelegene Ringspulen. Dieses Verfahren, den Plasmastrom durch [[elektromagnetische Induktion]] zu erzeugen, kann allerdings wie bei jedem Transformator keinen Dauerstrom liefern, da man den Primärstrom nicht ständig steigern kann, der Transformatorhub also begrenzt ist. Von Zeit zu Zeit muss der Primärstrom abgeschaltet werden; der Plasmaeinschluss geht während der Pause verloren, die Kernfusion setzt aus und muss danach neu „gezündet“ werden. Ein solcher Tokamak arbeitet also nicht kontinuierlich, sondern ''gepulst''. Für große Tokamaks wie [[ITER]] rechnet man mit Pulsdauern der Größenordnung 15 Minuten. Der Pulsbetrieb wäre für Leistungsreaktoren nur eine Notlösung, denn die großen Kräfte, die die Feldspulen aufeinander ausüben, würden dabei als ''Wechsellasten'' auftreten, die Strukturteile also besonders stark beanspruchen.
Das Funktionsprinzip wird im Folgenden mit einem Transformator verglichen. Das Plasma kann als Sekundärwicklung eines [[Transformator]]s wirken. Als Primärwicklung wirkt eine zentrale „Poloidal“-Feldspule im Torus-Zentrum, ergänzt durch weitere, koaxial mit dem Torus gelegene Ringspulen. Dieses Verfahren, den Plasmastrom durch [[elektromagnetische Induktion]] zu erzeugen, kann allerdings wie bei jedem Transformator keinen Dauerstrom liefern, da man den Primärstrom nicht ständig steigern kann, der Transformatorhub also begrenzt ist. Von Zeit zu Zeit muss der Primärstrom abgeschaltet werden; der Plasmaeinschluss geht während der Pause verloren, die Kernfusion setzt aus und muss danach neu „gezündet“ werden. Ein solcher Tokamak arbeitet also nicht kontinuierlich, sondern ''gepulst''. Für große Tokamaks wie [[ITER]] rechnet man mit Pulsdauern der Größenordnung 15 Minuten. Der Pulsbetrieb wäre für Leistungsreaktoren nur eine Notlösung, denn die großen Kräfte, die die Feldspulen aufeinander ausüben, würden dabei als ''Wechsellasten'' auftreten, die Strukturteile also besonders stark beanspruchen.


Deshalb wird an anderen Techniken zum Erzeugen und Aufrechterhalten des Plasmastroms geforscht. In Frage kommen vor allem die Neutralteilcheninjektion, die zugleich auch zur Plasmaheizung dient (siehe unten), sowie die Einstrahlung elektromagnetischer Wellen der sog. unteren Hybridfrequenz.<ref>[http://www.techniklexikon.net/d/stromtrieb/stromtrieb.htm Artikel „Stromtrieb“] bei www.techniklexikon.net</ref> Man hofft, mit diesen zusätzlichen Stromtriebmethoden einen kontinuierlichen Betrieb von Tokamak-Kraftwerksreaktoren zu erreichen.
Deshalb wird an anderen Techniken zum Erzeugen und Aufrechterhalten des Plasmastroms geforscht. In Frage kommen vor allem die Neutralteilcheninjektion, die zugleich auch zur Plasmaheizung dient (siehe unten), sowie die Einstrahlung elektromagnetischer Wellen der sogenannten unteren Hybridfrequenz.<ref>[http://www.techniklexikon.net/d/stromtrieb/stromtrieb.htm Artikel „Stromtrieb“] bei www.techniklexikon.net</ref> Man hofft, mit diesen zusätzlichen Stromtriebmethoden einen kontinuierlichen Betrieb von Tokamak-Kraftwerksreaktoren zu erreichen.


== Aufheizen des Plasmas ==
== Aufheizen des Plasmas ==
Zeile 34: Zeile 36:


=== Neutralteilcheninjektion ===
=== Neutralteilcheninjektion ===
[[Neutralteilcheninjektion]] bedeutet den Einschuss schneller Atome oder Moleküle in das durch ohmsche Heizung aufgeheizte, magnetisch eingeschlossene Plasma. Auf ihrem Weg durch das Plasma werden die Atome [[Ionisation|ionisiert]] und deshalb vom Magnetfeld gefangen. Dann übertragen sie einen Teil ihrer Energie auf die Plasmateilchen, indem sie wiederholt mit ihnen zusammenstoßen und so die Plasmatemperatur erhöhen. Als Neutralteilchen kommen vor allem Deuterium- und Tritium-Moleküle in Frage, sodass diese Plasmaheizung zugleich zur Brennstoffnachfüllung beiträgt.
[[Neutralteilcheninjektion]] bedeutet den Einschuss schneller Atome oder Moleküle in das durch ohmsche Heizung aufgeheizte, magnetisch eingeschlossene Plasma. Auf ihrem Weg durch das Plasma werden die Atome [[Ionisation|ionisiert]] und deshalb vom Magnetfeld gefangen. Dann übertragen sie einen Teil ihrer Energie auf die Plasmateilchen, indem sie wiederholt mit ihnen zusammenstoßen und so die Plasmatemperatur erhöhen. Als Neutralteilchen kommen vor allem Deuterium- und Tritium-Atome in Frage, sodass diese Plasmaheizung zugleich zur Brennstoffnachfüllung beiträgt.


=== Magnetische Kompression ===
=== Magnetische Kompression ===
Zeile 45: Zeile 47:
== Alternative: der Stellarator ==
== Alternative: der Stellarator ==
{{Hauptartikel|Stellarator}}
{{Hauptartikel|Stellarator}}
[[Datei:Wie arbeitet eine Fusionsanlage?.webm|mini|Video: Wie arbeitet eine Kernfusionsreaktor? (mit Vergleich von Tokamak und Stellator)]]
Die zweite Möglichkeit, die zum Einschluss eines Plasmas in einem toroidalen Magnetfeld benötigte schraubenförmige Verdrillung der Magnetfeldlinien herbeizuführen, ist der [[Stellarator]]. Hier werden Torus und/oder Magnetfeldspulen selbst so verdrillt, anschaulich in Form eines [[Möbiusband]]es, dass auch der poloidale (im Querschnitt des Ringes wirksame) Anteil des Feldes durch die Spulen erzeugt wird, anstatt durch einen im Plasma induzierten Strom wie beim Tokamak.
Die zweite Möglichkeit, die zum Einschluss eines Plasmas in einem toroidalen Magnetfeld benötigte schraubenförmige Verdrillung der Magnetfeldlinien herbeizuführen, ist der [[Stellarator]]. Hier werden Torus und/oder Magnetfeldspulen selbst so verdrillt, anschaulich in Form eines [[Möbiusband]]es, dass auch der poloidale (im Querschnitt des Ringes wirksame) Anteil des Feldes durch die Spulen erzeugt wird, anstatt durch einen im Plasma induzierten Strom wie beim Tokamak.


Ein Stellarator benötigt somit keinen im Plasma fließenden Strom, der im klassischen Tokamak in der Art eines Transformators erzeugt wird, und ist daher im Unterschied zum gepulsten Betrieb eines Tokamaks unmittelbar für den Dauerbetrieb geeignet. Wegen der komplexeren Spulengeometrie sind Konstruktion, Fertigung, Wartungs- und Reparaturarbeiten jedoch aufwendiger. Eine Optimierung der Spulengeometrie mittels leistungsfähiger Computerprogramme und die Fertigung solcher Spulen gelangen erst in jüngerer Zeit; dadurch weist die Tokamak-Entwicklung einen zeitlichen Vorsprung auf. Mit [[Wendelstein 7-X]] wurde im nordostdeutschen [[Greifswald]] erstmals ein großer Stellarator mit einer solchen optimierten Spulengeometrie aufgebaut, um das Stellarator-Konzept auf seine Eignung für einen Fusionsreaktor zu untersuchen. Im Dezember 2015 gelang es mit einem 2-MW-Puls erstmals, für 1/4 Sekunde ein Heliumplasma zu erzeugen. Bis März 2016 soll die Pulsenergie bis auf 20 MW erhöht werden, wodurch eine Lebensdauer des Plasmas von bis zu 30 Minuten erwartet wird.
Ein Stellarator benötigt somit keinen im Plasma fließenden Strom, der im klassischen Tokamak in der Art eines Transformators erzeugt wird, und ist daher im Unterschied zum gepulsten Betrieb eines Tokamaks unmittelbar für den Dauerbetrieb geeignet. Wegen der komplexeren Spulengeometrie sind Konstruktion, Fertigung, Wartungs- und Reparaturarbeiten jedoch aufwendiger. Eine Optimierung der Spulengeometrie mittels leistungsfähiger Computerprogramme und die Fertigung solcher Spulen gelangen erst in den 1980er Jahren; dadurch weist die Tokamak-Entwicklung einen zeitlichen Vorsprung auf. Mit [[Wendelstein 7-X]] wurde im nordostdeutschen [[Greifswald]] erstmals ein großer Stellarator mit einer solchen optimierten Spulengeometrie aufgebaut, um das Stellarator-Konzept auf seine Eignung für einen Fusionsreaktor zu untersuchen. Dort wurden im Jahr 2018 bis zu 26 Sekunden bestehende Plasmen mit Temperaturen von 60 Millionen Grad erzeugt. In den nächsten Jahren soll die Pulsenergie bis auf 20 MW erhöht und Plasmen bis zu 30 Minuten aufrechterhalten werden.


== Mischformen zwischen den beiden Konzepten ==
== Mischformen zwischen den beiden Konzepten ==
Viele physikalische und technische Fragestellungen sind für Tokamak und Stellarator ähnlich. Es gibt zudem Mischformen zwischen den beiden Konzepten, die Gegenstand aktueller Forschung sind:
Viele physikalische und technische Fragestellungen sind für Tokamak und Stellarator ähnlich. Es gibt zudem Mischformen zwischen den beiden Konzepten, die Gegenstand aktueller Forschung sind:


''Seitens der Tokamak-Entwicklung'' wird untersucht, inwieweit zusätzliche äußere Magnetfeldspulen mit helikal–stellaratorartiger Symmetrie helfen können, unerwünschte Instabilitäten am Plasmarand zu unterdrücken oder zu verringern. Diese Plasmarand-Instabilitäten, sogenannte ELMs (Edge Localized Modes), lassen kurzfristig heißes Plasma aus der äußersten Schicht des eingeschlossenen Plasmas auf die Plasmawand und den [[Divertor]] prallen, was wegen der hohen Leistungsdichte zu Schädigungen führen kann. Um sie zu unterdrücken, reichen anscheinend schon relativ geringe Magnetfelder aus; das Gesamtsystem ist daher trotzdem im Wesentlichen ein Tokamak. <br />
''Seitens der Tokamak-Entwicklung'' wird untersucht, inwieweit zusätzliche äußere Magnetfeldspulen mit helikal–stellaratorartiger Symmetrie helfen können, unerwünschte Instabilitäten am Plasmarand zu unterdrücken oder zu verringern. Diese Plasmarand-Instabilitäten, sogenannte ELMs (Edge Localized Modes), lassen kurzfristig heißes Plasma aus der äußersten Schicht des eingeschlossenen Plasmas auf die Plasmawand und den [[Divertor]] prallen, was wegen der hohen Leistungsdichte zu Schädigungen führen kann. Um sie zu unterdrücken, reichen anscheinend schon relativ geringe Magnetfelder aus; das Gesamtsystem ist daher trotzdem im Wesentlichen ein Tokamak.


''Seitens des Stellarators'' erlauben sogenannte quasi-toroidale Magnetfeldgeometrien, einen Teil der benötigten [[Rotationstransformation|Verdrillung der Feldlinien]] über den vom Druckgradienten des Plasmas selbst getriebenen Strom zu erzeugen. Dies wäre ähnlich einem Tokamak.
''Seitens des Stellarators'' erlauben sogenannte quasi-toroidale Magnetfeldgeometrien, einen Teil der benötigten [[Rotationstransformation|Verdrillung der Feldlinien]] über den vom Druckgradienten des Plasmas selbst getriebenen Strom zu erzeugen. Dies wäre ähnlich einem Tokamak.


== Aktuelle Forschung ==
== Aktuelle Forschung ==
[[Datei:Tcv int.jpg|mini|hochkant=1.4|Das Innere des [[Tokamak à configuration variable]], Abmessungen: Höhe 1,40 m, großer Radius 0,875 m]]
[[Datei:2017 TOCAMAC Fusion Chamber N0689.jpg|mini|hochkant=1.4|Das Innere des DIII-D-Tokamaks in San Diego, in Betrieb seit 1986, betrieben von [[General Atomics]] im Auftrag des US-Energieministeriums. Abmessungen: Höhe 2,8&nbsp;m; großer Radius 1,66 m]]
Die bisher leistungsfähigsten Anlagen zum magnetischen Einschluss eines Fusionsplasmas waren Tokamaks. Der 1984 fertiggestellte [[Joint European Torus]] (JET) in [[Culham]] nahe Oxford, [[Vereinigtes Königreich|Großbritannien]] ist der größte in Betrieb befindliche Tokamak. Hier sowie an der Anlage TFTR in Princeton wurde auch bereits mit der in einem Fusionskraftwerk benötigten Mischung aus Deuterium und Tritium experimentiert. Die dabei erreichte Fusionsleistung betrug kurzfristig am JET 65 % der zur Heizung des Plasmas aufgewendeten Leistung. Für größere Fusionsleistungen sind größere Dimensionen und verbesserte Einschlusseigenschaften des Magnetfelds erforderlich. Zudem müssen weitere technische Fragen gelöst werden wie die laufende Zufuhr neuen Brennstoffs und die Abführung der Fusionsprodukte (Helium), die dauerhafte Kühlung der supraleitenden Spulen oder die intermittierenden Zündungen.
Die bisher leistungsfähigsten Anlagen zum magnetischen Einschluss eines Fusionsplasmas waren Tokamaks. Der 1984 fertiggestellte [[Joint European Torus]] (JET) in [[Culham]] nahe Oxford, [[Vereinigtes Königreich|Großbritannien]] ist der größte in Betrieb befindliche Tokamak. Hier sowie an der Anlage TFTR in Princeton wurde auch bereits mit der in einem Fusionskraftwerk benötigten Mischung aus Deuterium und Tritium experimentiert. Die dabei erreichte Fusionsleistung betrug kurzfristig am JET 65 % der zur Heizung des Plasmas aufgewendeten Leistung. Für größere Fusionsleistungen sind größere Dimensionen und verbesserte Einschlusseigenschaften des Magnetfelds erforderlich. Zudem müssen weitere technische Fragen gelöst werden wie die laufende Zufuhr neuen Brennstoffs und die Abführung der Fusionsprodukte (Helium), die dauerhafte Kühlung der supraleitenden Spulen oder die intermittierenden Zündungen.


[[ITER]], die nächstgrößere Tokamakanlage, ist im südfranzösischen [[Cadarache]] im Bau (Stand 2014). Die Anlage soll erstmals einen Netto-Energiegewinn demonstrieren, jedoch noch keine elektrische Energie produzieren. Das erste vollständige Fusionskraftwerk wird nach jetzigen Planungen dessen Nachfolgeanlage [[DEMO]] sein.
[[ITER]], die nächstgrößere Tokamakanlage, ist im südfranzösischen [[Cadarache]] seit 2013 im Bau (Stand 2020). Die Anlage soll bei einer Fusionsleistung von 500 MW erstmals einen Netto-Energiegewinn demonstrieren, jedoch noch keine elektrische Energie produzieren. Das erste vollständige Fusionskraftwerk wird nach jetzigen Planungen dessen Nachfolgeanlage [[DEMO]] sein.


In Deutschland wird das Tokamak-Konzept derzeit an [[ASDEX Upgrade]] am [[Max-Planck-Institut für Plasmaphysik]] in [[Garching bei München|Garching]] bei [[München]] untersucht. Der Tokamak [[Forschungszentrum Jülich#Tokamak TEXTOR|TEXTOR]] des [[Forschungszentrum Jülich|Forschungszentrums Jülich]] wurde Ende 2013 stillgelegt.
In Deutschland wird das Tokamak-Konzept derzeit an [[ASDEX Upgrade]] am [[Max-Planck-Institut für Plasmaphysik]] in [[Garching bei München|Garching]] bei [[München]] untersucht. Der Tokamak [[Forschungszentrum Jülich#Tokamak TEXTOR|TEXTOR]] des [[Forschungszentrum Jülich|Forschungszentrums Jülich]] wurde Ende 2013 stillgelegt.


Am ''MIT Plasma Science and Fusion Center'' wird der weltweit einzige kompakte Tokamak mit einem hochmagnetischen Feld von bis zu acht Tesla betrieben, der ''Alcator C-Mod''. 2016 wurde erstmals ein Plasmadruck von über zwei Atmosphären bei ca. 35 Millionen Grad Celsius erreicht.<ref>{{Internetquelle|url=https://heise.de/-3352896|titel=MIT erzielt in der Fusionsenergie einen neuen Rekord|autor=Wolfgang Stieler, Jennifer Lepies|hrsg=|werk=[[heise online]]|datum=2016-10-18|sprache=|zugriff=2016-10-18}}</ref>
An der ''Italienischen Agentur für neue Technologien, Energie und Nachhaltige Entwicklung'' (ENEA) wird ein kompakter Tokamak mit einem hochmagnetischen Feld von bis zu acht Tesla betrieben, der [[:en:Frascati Tokamak Upgrade|FTU]]. Kompakte Hochfeld-Tokamaks mit Fusionsplasma wurden von einigen Fusionsforschern als kleinere Alternative zu ITER zur Realisierung selbstbrennender Reaktoren verfolgt. Nachdem der [[:en:Alcator C-Mod|Alcator C-Mod]] 2016 stillgelegt wurde, gibt es weitere Pläne ([[:en:IGNITOR|IGNITOR]], [[:en:SPARC (tokamak)|SPARC]], [[:en:Spherical Tokamak for Energy Production|STEP]]), deren Umsetzung aber ungewiss ist.
 
Der [[HL-2M]], ein von [[China National Nuclear Corporation]] und dem [[Southwestern Institute of Physics]] in [[Leshan]] zu Forschungszwecken betriebener Tokamak, erzeugt 150 Mio. °C heißes Plasma und wurde am 4. Dezember 2020 in Betrieb genommen.<ref>{{Internetquelle |autor=William Zheng |url=https://www.scmp.com/news/china/science/article/3112684/china-turns-its-artificial-sun-quest-nuclear-fusion-energy |titel=China turns on its ‘artificial sun’ in quest for nuclear fusion energy |werk=[[South China Morning Post]] |hrsg= |datum=2020-12-05 |abruf=2020-12-05 |sprache=en}}</ref>
 
Im September 2018 löste eine Gruppe um Jong-Kyu Park vom [[Princeton Plasma Physics Laboratory|PPPL]] einige mathematische Probleme im Zusammenhang mit der Stabilisierung des Magnetfeldes. Die Berechnungen wurden am [[Korea Superconducting Tokamak Advanced Research|KSTAR]] in Korea erfolgreich getestet.<ref>{{Internetquelle|url=https://www.pppl.gov/news/2018/09/discovered-optimal-magnetic-fields-suppressing-instabilities-tokamaks|autor=John Greenwald|titel=Discovered: Optimal magnetic fields for suppressing instabilities in tokamaks|werk=Webseite des [[Princeton Plasma Physics Laboratory|PPPL]]|datum=2018-09-10|zugriff=2018-09-18}}</ref>


== Weblinks ==
== Weblinks ==
{{Commonscat|Tokamaks}}
{{Commonscat|Tokamaks}}
* [http://www.jet.efda.org/multimedia/ EFDA JET] – Bilder, Grafiken und Videos des [[Joint European Torus|JET]] Tokamak
http://spectrum.ieee.org/energywise/energy/nuclear/wendelstein-7x-really-starts-up
== Einzelnachweise ==
== Einzelnachweise ==
<references />
<references />
Zeile 79: Zeile 83:
[[Kategorie:Fusionsreaktortechnik]]
[[Kategorie:Fusionsreaktortechnik]]
[[Kategorie:Wissenschaft (Sowjetunion)]]
[[Kategorie:Wissenschaft (Sowjetunion)]]
[[Kategorie:Wikipedia:Artikel mit Video]]

Aktuelle Version vom 10. Februar 2022, 11:07 Uhr

Der Joint European Torus, der derzeit größte Tokamak, in Betrieb seit 1983.
Das Plasmagefäß mit einem Durchmesser von 6 Metern und einer Höhe von 2,4 Meter ist hinter den orangefarbenen Eisenjochen der toroidalen Magnetfeldspulen sowie den Mess-, Heiz- und Kühlsystemen nahezu verborgen. Zum Größenvergleich beachte man den Techniker unten links.

Der Tokamak ist ein torusförmiger Typ eines Fusionsreaktors, der auf der Methode des magnetischen Plasmaeinschlusses beruht. Ein Plasma aus Wasserstoffisotopen in einem torusförmigen Gefäß wird durch ein starkes Magnetfeld zusammengehalten; dieses Feld wird – anders als im Stellarator – teilweise von einem im Plasma fließenden elektrischen Strom erzeugt. Die zurzeit (2019) leistungsfähigsten Anlagen zur Entwicklung der Fusionstechnik basieren auf dem Tokamak-Prinzip.

Die Idee des Tokamaks geht auf den deutschen Wissenschaftler Ronald Richter zurück und wurde später vom sowjetischen Wissenschaftler Oleg Alexandrowitsch Lawrentjew aufgegriffen (1949) und 1952 von Andrei Sacharow und Igor Tamm – weiter entwickelt. In den 1950er Jahren wurden in der Sowjetunion die ersten vorbereitenden Experimente durchgeführt. Als erster Tokamak gilt der sowjetische T3 von 1962.[1]

Das Wort ist die Transkription des russischen {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value), einer Abkürzung für „{{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value)“ ({{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) [tɔraiˈdalʲnaia ˈkamʲɛra v magˈnitnɨx kaˈtuʃkax]), übersetzt „Toroidale Kammer in Magnetspulen“. Zusätzlich bedeuten die ersten drei Buchstaben {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) übersetzt „Strom“ und verweisen damit auf den Stromfluss im Plasma, die entscheidende Besonderheit dieses Einschlusskonzepts.

Entwicklungsgeschichte

Gegen Mitte des 20. Jahrhunderts begann die erfolgreiche Entwicklung der zivilen Nutzung der Kernenergie und auch die Testexplosionen von Wasserstoffbomben verliefen wie geplant. In den 1950er Jahren begannen Physiker, die Möglichkeiten einer Energiegewinnung aus der kontrollierten Kernfusionsreaktion von Wasserstoff-Isotopen zu erforschen. Die Teilchen müssen dazu ein extrem heißes Plasma bilden, in dem bei bestimmten Bedingungen (siehe Lawson-Kriterium) die thermonukleare Reaktion selbsterhaltend abläuft.

Beim Einschluss des heißen Plasmas in ein klassisches Gefäß würde das Plasma sofort auskühlen. Um einen Abstand von der Gefäßwand herzustellen, ist die Lorentzkraft geeignet, mit der durch magnetische Felder eine Kraft auf bewegte geladene Teilchen ausgeübt werden kann (siehe auch Fusion mittels magnetischen Einschlusses).

Konzept

Magnetfeld

Tokamak-Felder

Zur Umsetzung dieses Ansatzes schlugen Sacharow und Tamm einen Torus-förmigen Fusionsreaktor vor, dessen Ring von Feldspulen umschlossen ist, deren „toroidales“ Magnetfeld das im Torus rotierende Plasma eingeschlossen hält (obere Abbildung).

Es wurde jedoch auch schon in der Theorie ein Problem erkannt, das sich aus der Magnetohydrodynamik des Plasmas ergibt, wonach die im inneren Bereich des Torus rotierenden Teilchen mit denen des äußeren Bereichs Verwirbelungen bilden. Um dies zu vermeiden, müssen die Teilchenbahnen zusätzlich eine Drehung innerhalb des Torus-Querschnitts durchführen, die magnetischen Feldlinien also spiralförmig verlaufen. Diese Verdrillung der Magnetfeldlinien wird beim Tokamak erreicht, indem man im Plasma selbst einen elektrischen Strom entlang des Ringes fließen lässt. Der Strom erzeugt ein Magnetfeld mit poloidal verlaufenden Feldlinien (mittlere Abbildung). Dieses überlagert sich dem durch die Spulen erzeugten toroidalen Feld, so dass sich der gewünschte spiralförmige Feldverlauf ergibt (untere Abbildung). Die Feldlinien schließen sich nicht nach einem Umlauf um den Ring, sondern bilden konzentrische, mechanisch stabilere Schichten (siehe auch Flussfläche). Die Elektronen und Ionen bewegen sich unter der Lorentzkraft auf engen, schraubenartigen Bahnen um je eine Feldlinie.

Die Magnetspulen eines Fusionsreaktors (nicht nur beim Tokamak) müssen für eine wirtschaftliche Netto-Energiegewinnung aus Supraleitern bestehen, damit ihr elektrischer Energiebedarf gering bleibt.

Erzeugung des Plasmastroms (Stromtrieb)

Das Funktionsprinzip wird im Folgenden mit einem Transformator verglichen. Das Plasma kann als Sekundärwicklung eines Transformators wirken. Als Primärwicklung wirkt eine zentrale „Poloidal“-Feldspule im Torus-Zentrum, ergänzt durch weitere, koaxial mit dem Torus gelegene Ringspulen. Dieses Verfahren, den Plasmastrom durch elektromagnetische Induktion zu erzeugen, kann allerdings wie bei jedem Transformator keinen Dauerstrom liefern, da man den Primärstrom nicht ständig steigern kann, der Transformatorhub also begrenzt ist. Von Zeit zu Zeit muss der Primärstrom abgeschaltet werden; der Plasmaeinschluss geht während der Pause verloren, die Kernfusion setzt aus und muss danach neu „gezündet“ werden. Ein solcher Tokamak arbeitet also nicht kontinuierlich, sondern gepulst. Für große Tokamaks wie ITER rechnet man mit Pulsdauern der Größenordnung 15 Minuten. Der Pulsbetrieb wäre für Leistungsreaktoren nur eine Notlösung, denn die großen Kräfte, die die Feldspulen aufeinander ausüben, würden dabei als Wechsellasten auftreten, die Strukturteile also besonders stark beanspruchen.

Deshalb wird an anderen Techniken zum Erzeugen und Aufrechterhalten des Plasmastroms geforscht. In Frage kommen vor allem die Neutralteilcheninjektion, die zugleich auch zur Plasmaheizung dient (siehe unten), sowie die Einstrahlung elektromagnetischer Wellen der sogenannten unteren Hybridfrequenz.[2] Man hofft, mit diesen zusätzlichen Stromtriebmethoden einen kontinuierlichen Betrieb von Tokamak-Kraftwerksreaktoren zu erreichen.

Aufheizen des Plasmas

Im Fusionsreaktor wird ein Teil der Reaktionsenergie, hauptsächlich die Rückstoßenergie, das Plasma heizen und die Energieverluste zur Wand ausgleichen. Dieser Zustand des „Brennens“ setzt bei Tokamaks wegen der geringen Dichte und Energieeinschlusszeit erst bei über 10 keV (über 100 Millionen °C) ein und muss für jeden neuen Puls (s. o.) zunächst auf andere Weise erreicht werden.

Ohmsche Heizung

Das Kennzeichen des Tokamak-Konzepts ist der im Plasma induzierte elektrische Strom. Diese ohmsche Heizung bzw. Widerstandsheizung bewirkt zwangsläufig auch eine Aufheizung des Plasmas. Dabei handelt es sich um die gleiche Art von Aufheizung wie beim Glühdraht einer Glühlampe oder einer Elektroheizung (Haartrockner, Heizlüfter etc.). Die Wärmeleistung hängt vom Widerstand des Plasmas und der Spannung ab. Da die Temperatur steigt, nimmt der elektrische Widerstand des Plasmas ab, und die ohmsche Heizung wird weniger effektiv. Die durch ohmsche Heizung erreichbare Maximaltemperatur in einem Tokamak scheint bei etwa 20–30 Millionen °C zu liegen. Um höhere Temperaturen zu erreichen, müssen andere Heizverfahren angewandt werden.

Neutralteilcheninjektion

Neutralteilcheninjektion bedeutet den Einschuss schneller Atome oder Moleküle in das durch ohmsche Heizung aufgeheizte, magnetisch eingeschlossene Plasma. Auf ihrem Weg durch das Plasma werden die Atome ionisiert und deshalb vom Magnetfeld gefangen. Dann übertragen sie einen Teil ihrer Energie auf die Plasmateilchen, indem sie wiederholt mit ihnen zusammenstoßen und so die Plasmatemperatur erhöhen. Als Neutralteilchen kommen vor allem Deuterium- und Tritium-Atome in Frage, sodass diese Plasmaheizung zugleich zur Brennstoffnachfüllung beiträgt.

Magnetische Kompression

Gase können durch plötzliche Erhöhung des Drucks aufgeheizt werden. Auf dieselbe Weise erhöht sich die Temperatur eines Plasmas, wenn das einschließende Magnetfeld stärker wird. In einem Tokamak wird diese Kompression erreicht, indem das Plasma in eine Zone höherer magnetischer Feldstärke verschoben wird (z. B. nach innen). Da Plasmakompression die Ionen einander annähert, hat das Verfahren zusätzlich den Vorteil, dass es die Erzielung der für die Fusion erforderlichen Dichte erleichtert.

Mikrowellenheizung

Hochfrequente elektromagnetische Wellen von geeigneter Frequenz und Polarisation werden durch Oszillatoren (Gyrotrons oder Klystrons) außerhalb des Torus erzeugt. Ihre Energie kann auf die geladenen Teilchen im Plasma übertragen werden, welche wiederum mit anderen Teilchen im Plasma kollidieren und so die Temperatur erhöhen. Es gibt verschiedene Methoden, je nachdem, ob die Energie zunächst auf die Elektronen oder die Ionen des Plasmas übertragen wird.

Alternative: der Stellarator

Video: Wie arbeitet eine Kernfusionsreaktor? (mit Vergleich von Tokamak und Stellator)

Die zweite Möglichkeit, die zum Einschluss eines Plasmas in einem toroidalen Magnetfeld benötigte schraubenförmige Verdrillung der Magnetfeldlinien herbeizuführen, ist der Stellarator. Hier werden Torus und/oder Magnetfeldspulen selbst so verdrillt, anschaulich in Form eines Möbiusbandes, dass auch der poloidale (im Querschnitt des Ringes wirksame) Anteil des Feldes durch die Spulen erzeugt wird, anstatt durch einen im Plasma induzierten Strom wie beim Tokamak.

Ein Stellarator benötigt somit keinen im Plasma fließenden Strom, der im klassischen Tokamak in der Art eines Transformators erzeugt wird, und ist daher im Unterschied zum gepulsten Betrieb eines Tokamaks unmittelbar für den Dauerbetrieb geeignet. Wegen der komplexeren Spulengeometrie sind Konstruktion, Fertigung, Wartungs- und Reparaturarbeiten jedoch aufwendiger. Eine Optimierung der Spulengeometrie mittels leistungsfähiger Computerprogramme und die Fertigung solcher Spulen gelangen erst in den 1980er Jahren; dadurch weist die Tokamak-Entwicklung einen zeitlichen Vorsprung auf. Mit Wendelstein 7-X wurde im nordostdeutschen Greifswald erstmals ein großer Stellarator mit einer solchen optimierten Spulengeometrie aufgebaut, um das Stellarator-Konzept auf seine Eignung für einen Fusionsreaktor zu untersuchen. Dort wurden im Jahr 2018 bis zu 26 Sekunden bestehende Plasmen mit Temperaturen von 60 Millionen Grad erzeugt. In den nächsten Jahren soll die Pulsenergie bis auf 20 MW erhöht und Plasmen bis zu 30 Minuten aufrechterhalten werden.

Mischformen zwischen den beiden Konzepten

Viele physikalische und technische Fragestellungen sind für Tokamak und Stellarator ähnlich. Es gibt zudem Mischformen zwischen den beiden Konzepten, die Gegenstand aktueller Forschung sind:

Seitens der Tokamak-Entwicklung wird untersucht, inwieweit zusätzliche äußere Magnetfeldspulen mit helikal–stellaratorartiger Symmetrie helfen können, unerwünschte Instabilitäten am Plasmarand zu unterdrücken oder zu verringern. Diese Plasmarand-Instabilitäten, sogenannte ELMs (Edge Localized Modes), lassen kurzfristig heißes Plasma aus der äußersten Schicht des eingeschlossenen Plasmas auf die Plasmawand und den Divertor prallen, was wegen der hohen Leistungsdichte zu Schädigungen führen kann. Um sie zu unterdrücken, reichen anscheinend schon relativ geringe Magnetfelder aus; das Gesamtsystem ist daher trotzdem im Wesentlichen ein Tokamak.

Seitens des Stellarators erlauben sogenannte quasi-toroidale Magnetfeldgeometrien, einen Teil der benötigten Verdrillung der Feldlinien über den vom Druckgradienten des Plasmas selbst getriebenen Strom zu erzeugen. Dies wäre ähnlich einem Tokamak.

Aktuelle Forschung

Das Innere des DIII-D-Tokamaks in San Diego, in Betrieb seit 1986, betrieben von General Atomics im Auftrag des US-Energieministeriums. Abmessungen: Höhe 2,8 m; großer Radius 1,66 m

Die bisher leistungsfähigsten Anlagen zum magnetischen Einschluss eines Fusionsplasmas waren Tokamaks. Der 1984 fertiggestellte Joint European Torus (JET) in Culham nahe Oxford, Großbritannien ist der größte in Betrieb befindliche Tokamak. Hier sowie an der Anlage TFTR in Princeton wurde auch bereits mit der in einem Fusionskraftwerk benötigten Mischung aus Deuterium und Tritium experimentiert. Die dabei erreichte Fusionsleistung betrug kurzfristig am JET 65 % der zur Heizung des Plasmas aufgewendeten Leistung. Für größere Fusionsleistungen sind größere Dimensionen und verbesserte Einschlusseigenschaften des Magnetfelds erforderlich. Zudem müssen weitere technische Fragen gelöst werden wie die laufende Zufuhr neuen Brennstoffs und die Abführung der Fusionsprodukte (Helium), die dauerhafte Kühlung der supraleitenden Spulen oder die intermittierenden Zündungen.

ITER, die nächstgrößere Tokamakanlage, ist im südfranzösischen Cadarache seit 2013 im Bau (Stand 2020). Die Anlage soll bei einer Fusionsleistung von 500 MW erstmals einen Netto-Energiegewinn demonstrieren, jedoch noch keine elektrische Energie produzieren. Das erste vollständige Fusionskraftwerk wird nach jetzigen Planungen dessen Nachfolgeanlage DEMO sein.

In Deutschland wird das Tokamak-Konzept derzeit an ASDEX Upgrade am Max-Planck-Institut für Plasmaphysik in Garching bei München untersucht. Der Tokamak TEXTOR des Forschungszentrums Jülich wurde Ende 2013 stillgelegt.

An der Italienischen Agentur für neue Technologien, Energie und Nachhaltige Entwicklung (ENEA) wird ein kompakter Tokamak mit einem hochmagnetischen Feld von bis zu acht Tesla betrieben, der FTU. Kompakte Hochfeld-Tokamaks mit Fusionsplasma wurden von einigen Fusionsforschern als kleinere Alternative zu ITER zur Realisierung selbstbrennender Reaktoren verfolgt. Nachdem der Alcator C-Mod 2016 stillgelegt wurde, gibt es weitere Pläne (IGNITOR, SPARC, STEP), deren Umsetzung aber ungewiss ist.

Der HL-2M, ein von China National Nuclear Corporation und dem Southwestern Institute of Physics in Leshan zu Forschungszwecken betriebener Tokamak, erzeugt 150 Mio. °C heißes Plasma und wurde am 4. Dezember 2020 in Betrieb genommen.[3]

Im September 2018 löste eine Gruppe um Jong-Kyu Park vom PPPL einige mathematische Probleme im Zusammenhang mit der Stabilisierung des Magnetfeldes. Die Berechnungen wurden am KSTAR in Korea erfolgreich getestet.[4]

Weblinks

Commons: Tokamaks – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

  1. Deutsche Phys. Gesellschaft, Webseite Stand 31. Oktober 2011: Magnetisch eingeschlossene Fusionsplasmen. (Memento vom 5. März 2014 im Internet Archive)
  2. Artikel „Stromtrieb“ bei www.techniklexikon.net
  3. William Zheng: China turns on its ‘artificial sun’ in quest for nuclear fusion energy. In: South China Morning Post. 5. Dezember 2020, abgerufen am 5. Dezember 2020 (Lua-Fehler in Modul:Multilingual, Zeile 149: attempt to index field 'data' (a nil value)).
  4. John Greenwald: Discovered: Optimal magnetic fields for suppressing instabilities in tokamaks. In: Webseite des PPPL. 10. September 2018, abgerufen am 18. September 2018.